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Résumé

Dans le cadre de notre dernière année de double licence Mathématiques et Physique, nous avons eu
l’opportunité de réaliser un stage de six semaines dans le milieu de la recherche en physique. Nous avons
choisi un stage au laboratoire Gulliver dans le cadre de la matière active, pour pouvoir mettre en oeuvre
les compétences en mathématiques, en physique et en informatique développées durant notre cursus. Le
laboratoire Gulliver possède en effet un essaim de robots utilisé dans le but de simuler de la matière active,
c’est-à-dire, qu’à partir de comportements individuels, il est possible d’obtenir un comportement collectif
émergent. Nous avons été chargé d’étudier la collision des robots avec les murs, cette dernière étant assez
particulière et, à ce jour, inexpliquée. A partir de différents modèles, nous avons simulé les comportements
des robots contre les murs, et bien que nous n’ayons pas trouvé de modèle qui nous satisfasse parfaitement,
nous avons réussi à trouver un modèle qui décrit assez bien la situation physique.

During the last year of our double major in Mathematics and Physics, we had the opportunity to
do a six week research internship in a laboratory. We chose an internship at the Gulliver laboratory in the
active matter research domain, in order to be able to put into practice the skills in mathematics, physics
and computer science developed during our studies. The Gulliver laboratory has indeed a swarm of robots
used in order to simulate active matter, that is to say, from individual behaviors, it is possible to obtain
emergent collective behavior. We have been asked to study the collision of the robots with the wall, it being
quite particular and, to date, unexplained. Using different types of model, we have simulated the behavior
of the robots against the wall, and although we did not find one that suits us perfectly, we managed to find
a model that describes the physical situation quite well.
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1 Introduction
Durant ce stage, nous nous sommes interessés à la robotique en essaim distribuée : cela signifie que

l’on étudiait un grand nombre de robots possédant tous leur propre puissance de calcul et n’étant pas glo-
balement coordonnés. Le laboratoire cherchait, durant notre stage, à constituer un essaim d’une centaine de
robots : des kilobots. Disposant dejà de quelques robots, notre travail, pendant les quatre premières semaines
de stage, a été de trouver un modèle mathématique pour décrire le comportement expérimental d’un unique
kilobot.

L’essaim de robot est supposé être capable de reproduire l’expérience initiale des grains marcheurs
[1], car ces deux expériences étudient des disques autopropulsés. On s’attend à ce que les mêmes équations
régissent le mouvement. Cependant, expérimentalement, on observe lors des contacts avec un mur des phé-
nomènes d’oscillation qui ne sont pas décrits par le modèle des grains marcheurs. Les équations initiales
fonctionnant très bien pour les déplacements en l’abscence de mur, nous avons cherché à les conserver en
ajoutant différents éléments pour décrire le phénomène oscillatoire observé. Les équations initiales ne possè-
dant pas de solution analytique, nous avons approximé numériquement leurs solutions dans le cas général et
tenté de résoudre les cas limites.

Ce stage s’est déroulé au laboratoire Gulliver dans la branche consacrée à la matière active : Il s’agit
d’une branche de la physique statistique étudiant des systèmes en dehors de l’équilibre thermodynamique.
Les systèmes étudiés cassent la symétrie de renversement du temps, se déplacent ou exercent une force sur
leur environnement. Ce domaine décrit des phénomènes à des échelles très variées : des mouvements de bancs
de poissons ou de nuées oiseaux aux particules colloïdes à l’échelle des cellules.

Ces modèles sont très utiles dans le cadre de la biologie, ils permettent de mieux comprendre comment
émergent des comportements de groupe comme un mouvement collectif lorsque les interactions sont à courtes
portées à l’échelle du groupe. Cette description convient particulièrement à l’étude d’insectes sociaux comme
les fourmis ou les abeilles. Notre encadrant, Jérémy Fersula, poursuit sa thèse entre la matière active et
la robotique, en utilisant un grand nombre de robots aux fonctionnalitées rudimentaires pour caractériser
les comportements de particules actives dont on peut faire varier différents paramètres comme la vitesse, la
distance des interactions ou encore la nature de ces dernières.

L’objectif de l’étude des kilobots est de pouvoir créer des systèmes complexes où un essaim de kilobots
pourrait réaliser des tâches comme le transport de pièces plus grandes qu’eux. Le but de l’étude d’un point
de vue physique est de déléguer la communication entre robots aux interactions physiques (c’est-à-dire des
collisions). On espère alors observer l’apparition de mouvements collectifs et, pourquoi pas, explorer différents
algorithmes pour choisir la direction de ces mouvements.
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2 Présentation des kilobots
Les kilobots (Fig 1) sont les robots utilisés dans le laboratoire et sur lesquels nous nous sommes basés

pour faire nos simulations. Ils sont composés de trois pattes rigides et de deux moteurs, l’un à droite et l’autre
à gauche, les faisant vibrer à une certaine fréquence choisie par l’utilisateur : l’inclinaison des trois pattes et
la différence de vitesse entre les deux moteurs leur permet de se déplacer et de grossièrement contrôler leur
direction. Ils possèdent en outre une LED pouvant afficher du rouge, du vert ou du bleu, d’un capteur de
lumière et ainsi qu’un émetteur-transmetteur infrarouge. Ces dernières particularités servent principalement
à programmer des comportements particuliers dans le cas d’essaim ou de murs particuliers, répulsifs par
exemple.

Le problème de ces kilobots est qu’ils ne possèdent que trois pattes et que, lors des expériences, ils
présentent des comportements trop chaotiques et de ce fait non prévisibles. Pour pallier ce problème, les
kilobots sont montés sur deux brosses à dents (Fig 2) ce qui leur permet d’avoir des pattes en plus grand
nombre et qui sont plus souples que les pattes originelles. De plus, on déforme les poils de la brosse à dents
(Fig 3) de façon à créer une asymétrie entre l’avant et l’arrière du kilobot ce qui leur permet d’avancer dans
une direction bien determinée. De plus un exosquelette cylindrique leur est ajouté afin d’avoir une zone de
contact constante de chaque coté du kilobot, et qui est utilisée pour l’analyse d’image.

Fig 1 - Kilobot vu du côté et de dessous.
(A) Moteur, (B) Batterie, (C) Pattes ri-
gides, (D) Receveur/transmetteur infra-
rouge, (E) LED, (F) Branche de charge-
ment (G) Capteur de lumière. Tiré de [2]

Fig 2 - Kilobot monté

Fig 3 - Brosse à dent

Ainsi, dorénavant et pour le restant du rapport, le terme kilobot fera référence a l’ensemble kilobot
monté dans son exosquelette avec ses brosses à dents. Si un cas litigieux venait à se présenter, nous utiliserons
les termes complets pour ne pas prêter à confusion.

3 Mise en équation du problème
Le modèle initial est issu de l’article [3] qui décrit la dynamique des grains marcheurs. On place le(s)

kilobot(s) dans une arène carrée centrée en 0. On définit les axes de la façon décrite sur la figure 4 et on se
place ainsi dans le plan, à savoir R2 défini par le repère direct (0,Ð→ux,Ð→uy) avec 0 le centre de l’arène défini
sur la figure 4. Par la suite, nous nous placerons dans R3, en rajoutant le vecteur Ð→uz au repère précédent de
manière à ce que ce dernier soit direct. Ce changement est mis en place notamment pour utiliser le produit
vectoriel et décrire des axes de rotations, mais le mouvement, lui, restera dans le plan.
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Fig 4 - Arène utilisée (Le repère est donné à titre indicatif)

Un kilobot est modélisé par un point de masse m possédant une orientation de prédilection définie
par le vecteur unitaire Ð→n et subissant une force F0

Ð→n le propulsant dans cette direction. Le kilobot est aussi
décrit par sa vitesse Ð→v et par le frottement sur le sol, de coefficient γ qui empêche la vitesse Ð→v de diverger, ce
qui permet de définir une échelle des vitesses à partir de cette vitesse finale, de norme notée v0. En l’absence
de mur, le principe fondamental de la dynamique nous donne alors l’équation 1 que l’on adimensionnera par
la suite.

m Ð̇→v = F0
Ð→n − γÐ→v (1)

Pour adimensionner cette équation, nous avons déjà défini l’échelle des vitesses plus haut. On définit
dès lors l’échelle des longueurs à partir du diamètre du kilobot. En outre, l’échelle des temps est d’ores et
déjà définie à partir du rapport de la longueur et de la vitesse. On obtient ainsi une équation adimentionnée
pour la vitesse avec τv = mF0

γ2d
:

τv
Ð̇→v = Ð→n −Ð→v (2)

Pour la rotation du kilobot, le modèle initial suppose trois choses : l’existence d’un couple qui tend à
aligner Ð→n sur Ð→v , l’existence d’un frottement de coefficient Ω qui empêche θ de diverger et le fait que l’on
puisse négliger le moment d’inertie (par rapport à son axe de rotation, à savoir la droite dirigée par Ð→uz et
passant par le centre du kilobot) du système devant les forces d’amortissement visqueux, le théorème du

moment cinétique nous donne alors l’équation 3, en notant Ð→n = (cos θ
sin θ

) et Ð→v = (vx
vy

).

Iθ̈ = ζ(cos θvy − sin θvx) −Ωθ̇ (3)
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Or, on suppose que I ≪ 1, et on obtient ainsi une équation en θ qu’il est facile d’adimensionner avec
τn = Ω

dζ
:

τnθ̇ = cos θvy − sin θvx (4)

Pour modéliser leur comportement réel, un biais adimentionné à β = β̂× d
Ωv0

,avec β̂ le biais dimensionné,
est alors ajouté sur θ, ce qui correspond au fait qu’en pratique aucun robot ne va exactement en ligne droite. Il
est ensuite possible d’ajouter différentes forces extérieures pour voir comment elles influent sur notre modèle.
Pour vérifier ce modèle, il est possible de faire l’expérience sur un plan incliné. Cela permet l’ajout d’une
force supplémentaire qui s’applique alors à la dynamique de Ð→v et qui va donc nous donner des trajectoires
non triviales. C’est une des expériences qui a été réalisée avant notre arrivée par Jérémy Fersula et qui justifie
notre confiance en ce modèle. Finalement le modèle adimensionné retenu est le suivant :

τv
Ð̇→v = Ð→n −Ð→v +∑

ÐÐ→
Fext (5)

τnθ̇ = cos θvy − sin θvx + β (6)

On peut, dans ce modèle adimensionné, considérer que τv et τn sont les temps caractéristiques que
prennent les directions respectives de Ð→n et Ð→v à s’aligner entre eux : la direction finale à un moment donné est
alors determinée par le rapport τv

τn
. Lorsque τv est suffisamment petit, on peut alors approximer le membre

de gauche par 0 dans l’équation 5 et ainsi remarquer que Ð→v s’aligne sur Ð→n +Ð→F ext, ce qui semble être une assez
bonne approximation de la réalité et qui simplifira les calculs des cas limites. Les différents comportements

sont présentés sur les figures 5 et 6 avec comme conditions initiales Ð→n = (1
0
) et Ð→v = ( 0

2v0
), l’orthogonalité

permettant de mieux comprendre quel vecteur s’aligne sur l’autre.

Le point de départ de la trajectoire est l’origine. Pour mieux comprendre la trajectoire du kilobot, la
couleur du point en question dépend linéairement du temps pour avoir les couleurs de l’arc-en-ciel. En outre,
lorsque ce n’est pas précisé, les graphes montrés dans le rapport sont obtenus avec τv = 1, τn = 1, β = 0 et le
kilobot est placé sur l’origine avec une vitesse Ð→v et angle θ initiaux nuls (pour Ð→n et Ð→v ).

Fig 5 - τv = 0.1 et τn = 1 Fig 6 - τv = 10 et τn = 1
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4 Description du phénomène étudié
Les équations présentées précédement fonctionnent bien généralement, mais ne rendent pas compte

des différents phénomènes apparaissant sur les parois de l’arène. En effet, les kilobots oscillent sur la paroi.
On observe que l’amplitude de ces oscillations augmente et, en fonction de la vitesse du robot, il va soit
rester bloqué contre le mur dans un cycle limite soit se libérer. Sur ce gif, on observe bien les oscillations du
robot contre un mur horizontal. On remarque, en observant davantage de robots, à différentes vitesses, que
la fréquence d’oscillation reste constante, aux alentours de 0.5 Hertz.

Différentes expériences ont permis de faire l’acquisition de la trajectoire et de l’orientation du kilobot
au cours du temps, ainsi nous pouvons observer les deux comportements sur la figure 11 : on remarque que,
lorsque le robot a peu de vitesse, le cycle limite est atteint après une oscillation, expérimentalement, ce
nombre reste toujours dans cet ordre de grandeur.

a) - Trajectoire d’un Kilobot à vitesse élévée
b) - Orientation au cours du temps pour a)

c) - Trajectoire d’un Kilobot à vitesse faible
d) - Orientation au cours du temps pour c)

Fig 11 - Comportement typique des kilobots contre le mur dans les cas avec ou sans décrochage
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On observe d’ailleurs l’influence du biais sur la trajectoire, on voit que, pour le cas à faible vitesse, la
direction oscille autour d’un point en dessous de zéro, ce qui a pour effet de faire dériver le robot le long du
mur. Cependant, le modèle décrit plus haut prédit un rebond classique entre particule et mur. Il y a donc la
nécessité de prendre en compte des paramètres du problème qui ont été négligés dans la mise en équation.

5 Données réelles
Pour acquérir des données réelles, et ainsi pouvoir essayer de comprendre plus efficacement le phé-

nomène d’oscillation des kilobots, nous avons dû recupérer des données à partir de kilobots en action. Les
expériences sont réalisées sur l’arène présentée plus haut (Figure 4). On cherche à observer des oscillations
contre le mur, donc on cherche à filmer seulement les moments où le kilobot tape le mur. On restreint donc
la zone d’étude du kilobot et on fixe la caméra pour qu’elle ne capture que l’interieur du rectangle défini par
les pastilles violettes de la figure 12.

Fig 12 - Réalisation de l’expérience

Fig 13 - Image depuis la caméra

5.1 Mise en marche
Comme vu sur la figure 1, les kilobots possèdent deux moteurs vibratoires. En outre, certains pos-

sèdent des biais et les exosquelettes peuvent avoir des imperfections et eux aussi, ajouter du biais. Grâce au
logiciel kilogui [4], nous avons pu régler la puissance de chacun des moteurs individuellement ce qui permet
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de contrôler la direction du kilobot et ainsi de contrer son biais, le faisant aller plus ou moins droit.

Nous avons donc fait rencontrer des kilobots et le mur. Nous avons fait des mesures avec trois kilobots,
l’un présentait un biais à gauche, l’autre à droite et enfin le dernier ne présentait qu’un très léger biais. Pour
chaque expérience, nous envoyions le kilobot sur le mur avec un réglage sur les moteurs de telle sorte à ce
qu’il aille droit. Nous avons fait cette manipulation avec 5 réglages différents sur les moteurs, ce qui avait
pour but de changer la vitesse finale du kilobot au moment où il frappait le mur.

5.2 Acquisition
Pour chacune des expériences, on filme le kilobot dans la zone de l’expérience pendant deux minutes,

et si le kilobot venait à en sortir on le replace dedans. La caméra filmant à trente-trois images par seconde,
on obtient un peu moins de quatre mille images de l’expérience à partir du logiciel Pixelink.

Ensuite, dans le but d’analyser ces données plus efficacement, Jérémy Fersula a mis en place un pro-
gramme qui, à chaque image soustrait le fond, à savoir la figure 13 (qui été coupée pour ne garder que le
noir foncé et le noir un peu plus clair du sol de l’arène) dans le but de pouvoir détecter le kilobot.

La seconde partie du programme permet de détecter l’orientation du kilobot. Pour ce faire, de nom-
breux procédés ont vu le jour mais celui retenu est celui sur la figure 14. L’exoquellette est recouvert pa,r
un anneau à moitié coloré en noir et à moitié en blanc. L’avant du kilobot est donc au milieu de la bande
noire et l’arrière est au milieu de la bande blanche. Finalement, après le passage par le traitement d’image,
on obtient un classeur (.csv) qui contient les paramètres de la série d’images (comme l’intensité moyenne).
Mais il y a aussi (et surtout) autant de lignes que d’images et trois colonnes contenant les coordonnées x,
y et θ du kilobot. Le temps de la prise de l’image n’est pas indiqué car nous connaissons déjà le nombre
d’image par seconde et donc le nombre de seconde entre chaque image.

Il nous semblait important de noter que nous avons eu de nombreux problèmes avec cette détection
d’image, comme sur la figure 15, où le kilobot semblait se retourner instantanément et surtout sans raison.
Nous avons finalement réussi à obtenir des données expérimentales cohérentes qui nous ont permis d’étudier
plus précisément le mouvement des kilobots.

Fig 14 - Kilobot vu de dessus Fig 15 - Exemple de mauvaise détection
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5.3 Etude des données
Durant ce stage, nous avons principalement travaillé sur un modèle physique plus complet pour les

kilobots. Bien que nous n’ayons pas trouvé de modèle répondant parfaitement à nos attentes, nous avons
exploré bon nombre de pistes.

Fig 16 - Un exemple de données réelles Fig 17 - Un second exemple

Finalement, les données obtenues ne sont pas satisfaisantes, par exemple, sur la figure 16, le robot est
opposé au mur mais tourne quand même dessus et sur la figure 17, le robot oscille tout en avançant ce qui
ne correspond pas du tout à ce que nous avons observé lors des manipulations.

Nous n’avons pas eu l’occasion de refaire des mesures ni de se plonger dans le code d’analyse d’image
précédement développé, et donc de comprendre pourquoi les résultats n’étaient pas tous concluants et donc
exploitables. Malgré des mesures critiquables, ces expérimentations nous ont permis de mieux comprendre le
phénomène que nous étudions et les différentes oscillations que pouvaient présenter les kilobots en fonction
de leur biais, leur vitesse de collision, ou encore l’angle avec lequel ils rentraient dans le mur.

6 Mise en équation et simulation
Dans un premier temps, nous avons étudié numériquement les équations initiales 5 et 6. Nous avons

donc codé en python sur le logiciel "PyCharm" en utilisant un git pour pouvoir développer différents modèles
à la fois, nous permettant ainsi de pouvoir restaurer d’anciennes versions et avoir une trace de chaque code
produit. Cela nous a aussi permis de travailler à deux sans supprimer tout le travail ayant été produit par
l’un ou par l’autre.

6.1 Code implémenté
Lorsque nous avons débuté le stage, notre encadrant, Jérémy Fersula, avait déjà commencé à mettre

en place une interface graphique et un programme de résolution d’équation. Nous avons donc implémenté
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de nouvelles fonctionnalités et modifié certaines déjà présentes.

Pour résoudre les équations en question, dans un premier temps, Jérémy a utilisé la fonction odeint
du module scipy.integrate puis nous avons basculé sur le schéma de Runge-Kutta 4 nous permettant d’avoir
plus de possibilités sur la résolution et notamment sur l’ajout d’un bruit angulaire sur l’orientation de la
vitesse et de l’axe du kilobot.

Fig 18 - Interface graphique finale

Nous avons rajouté divers graphes sur l’interface graphique, notamment en permettant d’importer
des données expérimentales, de pouvoir visualiser l’angle des vecteurs Ð→n et Ð→v et de regarder s’il y a des
phénomènes d’oscillations par exemple. Nous avons mis en place une transformée de Fourier pour trouver
la fréquence d’oscillation du kilobot contre le mur. L’échelle de temps n’étant pas la seconde, la transfor-
mée de Fourier n’est pas vraiment exploitable mais permet de savoir si la fréquence d’oscillation est constante.

Nous avons implémenté des boutons permettant de rapidement charger et sauvegarder des configura-
tions données. En effet, comme on peut le voir sur la figure 18, nous avions plus d’une vingtaine de paramètres
et il nous semblait complexe de devoir se rappeler la valeur de chaque paramètre pour observer un phénomène
donné.

Un des problèmes que nous avons rencontrés fut celui du temps de calcul. En effet, l’interface graphique
a pour but de pouvoir modifier rapidement des paramètres et, de ce fait, pouvoir en voir rapidement les
résultats. Etant donné que nous étions sur nos machines personnelles, peu puissantes, nous avons essayé de
réduire les calculs au maximum en ne calculant, par exemple, la solution de l’équation différentielle ou la
transformée de Fourier que lorsque c’était nécessaire,.
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6.2 Modelisation du mur
Sur les conseils de notre encadrant Olivier Dauchot, nous avons défini un puit de potentiel en 2D de

la forme suivante :

V (x, y) = A [(x
σ
)
α

+ ( y
σ
)
α

] (7)

Avec σ la distance du mur au centre et α ≫ 1 et pair (dans nos simulations α = 20) fixé pour avoir
un potentiel lui aussi pair dont l’intensité est représentée par A. Le potentiel est donc un carré de centre
l’origine et de côté σ. L’idée étant de modéliser un puit de potentiel infini tout en préservant la continuité,
afin de ne pas avoir à faire de test de contact entre le kilobot et le mur. A partir du potentiel, on obtient la
force du mur du fait que

Ð→
F = −Ð→∇V :

ÐÐÐÐ→
F (x, y) = −A α

σα
(xα−1Ð→ux + yα−1Ð→uy) (8)

Par la suite, on adimensionne l’expression de la force pour obtenir le modèle suivant en ajoutant la
force au modèle 5, 6 définie dans la partie 3 :

⎧⎪⎪⎨⎪⎪⎩

τv
Ð̇→v = Ð→n −Ð→v − κ ( d

σ
)α (xα−1Ð→ux + yα−1Ð→uy)

τnθ̇ = cos θvy − sin θvx + β
(9)

Avec τv = mF0

γ2d
, τn = Ω

ζ
, β = β̂ × d

Ωv0
et κ = αA

γv0d
comme paramètres adimensionnés, nous avons donc

simulé la trajectoire d’un kilobot avec ce potentiel :

Fig 19 - θ0 = 0.4 Fig 20 - θ0 = 0

Les trajectoires observées sont presentées sur les figures 19 et 20 pour différents angles θ0 exprimés
en radians (et ce, tout le long du rapport) : on observe alors que le kilobot rebondit contre le mur ou bien,
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dans le cas limite, s’aligne contre celui-ci.

Sur la figure 19, le kilobot rebondit sur le mur similairement à un rayon lumineux sur un miroir, à la
différence près que le kilobot reste plus longtemps en contact avec le mur. Dans tous les cas, ce n’est pas du
tout le résultat attendu, il faut un modèle plus adapté.

En outre, on remarque sur la figure 20 que le kilobot tape le mur et garde la même direction. Ce n’est
évidemment pas observable en pratique notamment du fait de l’imperfection des kilobots et de leur asymétrie
entre les deux brosses à dent. Pallier ce problème est plus simple que résoudre le précédent : nous avons
simplement ajouté un bruit angulaire sur l’orientation de Ð→n et Ð→v à chaque pas de temps dans la résolution
de l’équation différentielle.

7 Les différents modèles proposés

7.1 Friction avec le mur
La première idée que nous avons explorée est celle de la friction avec le mur. On suppose alors

l’apparition d’une composante tangentielle à la réaction du mur, le point d’application de cette force étant
le point de contact avec le mur, ce qui va alors aussi générer un couple et induire un nouveau couplage en θ.
L’expression retenue est alors, avec φ le coefficient de frottement :

ÐÐÐÐÐÐ→
Ffrottement = φ

Ð→
F ∧Ð→v dont la composante

sur z (la seule non nulle) serait ajoutée sur le membre de droite de l’équation 6 et permettrait d’avoir une
vitesse angulaire qui varierait en fonction de la vitesse et de la force du mur. Le modèle dimensionné est
obtenu comme précedemment dans la partie 3 à savoir avec le principe fondamental de la dynamique et le
théorème du moment cinétique :

⎧⎪⎪⎨⎪⎪⎩

mÐ̇→v = F0
Ð→n − γÐ→v + −A α

σα
(xα−1Ð→ux + yα−1Ð→uy)

Ωθ̇ = ζ(cos θvy − sin θvx) + φ(
Ð→
F ∧Ð→v )z + β̂

(10)

Avec τv = mF0

γ2d
, τn = Ω

dζ
, β = β̂

ζv0
, κ = αA

γv0d
, et µ = φv20m

ζd
, on obtient le modèle adimensionné suivant :

⎧⎪⎪⎨⎪⎪⎩

τv
Ð̇→v = Ð→n −Ð→v − κ ( d

σ
)α (xα−1Ð→ux + yα−1Ð→uy)

τnθ̇ = cos θvy − sin θvx + µ(
Ð→
F ∧Ð→v )z + β

(11)

Fig 21 - µ = 0 Fig 22 - µ = 0.5
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Fig 23 - µ = 1

On simule donc le modèle 11 et on obtient les figures ci-dessus dont le résultat est peu concluant, le
kilobot n’oscille pas.

En effet, les figures 21, 22 et 23 montrent clairement l’effet de cette force, à savoir maintenir le kilobot
près du mur et essayer de l’empêcher de partir. Cet effet est d’autant plus notable que, lorsque µ est grand,
le kilobot ne bouge plus dès lors qu’il touche le mur. En fait, cette force modélise plutôt une arène dont les
bords seraient recouverts de ruban adhésif double face, on aurait pu s’attendre, au vu de son expression,
qu’elle ne produirait pas d’oscillation. Cependant, la première force à laquelle on pense lorsqu’on néglige des
effets physiques est la force de frottement.

7.2 Variation de τn en fonction de la force
En partant de l’observation que Ð→n et Ð→v ont tendance à se désaligner lorsque le kilobot est collé au

mur, nous avons eu l’idée de faire varier τn en fonction de la force et de rendre ce dernier négatif dès lors que
la force appliquée devient grande pour que Ð→n et Ð→v tendent à se désaligner. On aurait ainsi Ð→v qui cherche
à s’aligner sur Ð→n tandis que Ð→n cherche à s’éloigner de Ð→v .

Nous avons donc pensé à exprimer τn de la manière suivante, avec c un coefficient adimentionné fixé
et avec τn0 , le τn initial, présent en l’absence de mur :

τn(
Ð→
F ) = τn0 − c∣∣

Ð→
F ∣∣ (12)

Le modèle reste le même mais τn dépend dorénavant de la force :

⎧⎪⎪⎨⎪⎪⎩

τv
Ð̇→v = Ð→n −Ð→v − κ ( d

σ
)α (xα−1Ð→ux + yα−1Ð→uy)

(τn0 − c∣∣
Ð→
F ∣∣)θ = cos θvy − sin θvx + β

(13)

Avec τv = mF0

γ2d
, τn0 = Ω

dζ
, β = β̂ × d

Ωv0
et κ = αA

γv0d
. On simule donc ce modèle pour différentes valeurs

de c :
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Fig 24 - c = 0 Fig 25 - c = 1

Fig 26 - c = 3

Sur les figures 24, 25 et 26, nous avons regardé comment c agissait sur le mouvement du kilobot. Le
résultat ne présente aucune oscillation et surtout, pour des valeurs de c assez proches, des résultats très
différents pouvaient être obtenus. Nous n’avons pas davantage creusé cette voie là, en changeant de fonction
par exemple, car elle nous semblait difficilement justifiable physiquement et n’avait pas l’air très prometteuse.

7.3 Modèle Inertiel
Après des modèles naïfs reposant surtout sur l’observation, nous avons remis en cause les hypothèses

initiales du modèle. En premier lieu, nous avons considéré que le moment d’inertie n’est pas nul, en effet,
celui-ci avait été négligé pour le modèle des grains marcheurs. Pour les kilobots, il ne nous semble pas
pertinent de le négliger, cela nous a permis alors d’avoir des équations du second ordre sur θ et rend plus
simple l’apparition de phénomènes oscillants. Nous avons en premier lieu essayé le modèle adimensionné sans
aucune force tangentielle. Le modèle selon Ð→v reste inchangé.
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τv
Ð̇→v = Ð→n −Ð→v − κ( d

σ
)
α

(xα−1Ð→ux + yα−1Ð→uy) (14)

Avec τv = mF0

γ2d
et κ = αA

γv0d
. En repartant de l’équation 15 obtenue à partir du théorème du moment cinétique,

sans négliger le moment d’inertie cette fois-ci, on obtient une équation adimensionnée :

Iθ̈ = ζ(cos θvy − sin θvx) −Ωθ̇ (15)

On peut ainsi adimensionner cette équation et obtenir une nouvelle formule :

Jθ̈ = β +Z(cos θvy − sin θvx) − θ̇ (16)

Avec J = Iv0
dΩ

, le moment d’inertie adimentionné, β = β̂ × d
Ωv0

, le biais adimentionné et Z = ζd
Ω
, le

coefficient de couplage adimentionné. Le modèle reste le même selon la vitesse et devient alors :

τv
Ð̇→v = Ð→n −Ð→v − κ( d

σ
)
α

(xα−1Ð→ux + yα−1Ð→uy) (17)

Jθ̈ = β +Z(cos θvy − sin θvx) − θ̇ (18)

7.3.1 Cas limite

On cherche à résoudre analytiquement ces équations dans certains cas limites pour observer le modèle.
On se place donc dans le cas où le kilobot arrive sur le mur de droite avec une direction dont la composante
selon Ð→ux est très grande devant celle selon Ð→uy. A partir de θ ≪ 1, on obtient cos θ ≃ 1 et sin θ ≃ θ. En outre
on suppose que τv ≪ 1 et l’équation 17 devient donc :

Ð→v = Ð→n − κ( d
σ
)
α

(xα−1Ð→ux + yα−1Ð→uy) ≃ (1 − κ( d
σ
)
α

xα−1)Ð→ux + θÐ→uy (19)

Expression dans laquelle on suppose que le kilobot reste près du mur, c’est-à-dire que x reste constant,
par ailleurs le kilobot est sur le mur de droite donc la composante de la force selon Ð→uy est nulle. On notera
fx = −κ ( d

σ
)α xα−1 la force du mur selon x qui, ici, sera négative. L’équation 18 peut s’écrire alors :

Jθ̈ = Z(θ − θ(1 + fx)) − θ̇ + β (20)

Ô⇒ Jθ̈ + θ̇ +Zfxθ = β (21)

On obtient donc une équation différentielle du second ordre qui se résout simplement analytiquement.
Le comportement de la solution dépend principalement du signe du déterminant ∆ du polynôme caractéris-
tique.

∆ = 1 − 4JZfx (22)

On note x± les solutions du polynôme caractérique et on résout l’équation homogène dans un premier
temps selon le signe de ∆ :

∆ > 0 Ô⇒ x± =
−1 ±

√
∆

2J
Ô⇒ θ(t) = Aex+t +Bex−t (23)

∆ = 0 Ô⇒ x± = x = −
1

2J
Ô⇒ θ(t) = (At +B)ext (24)

18



∆ < 0 Ô⇒ x± = −
1

2J
°
u

±i
√

∣∆∣
2J

²
v

Ô⇒ θ(t) = eut(A cos vt +B sin vt) (25)

On remarque en outre, que J étant un moment d’inertie, il est positif. De ce fait, − 1
2J

est négatif. Les
solutions pour ∆ ≥ 0 ne sont pas celles qui nous intéressent car elles ne présentent pas de caractère oscilla-
toire. En revanche, pour ∆ < 0, il y a apparition de cosinus et sinus et donc d’oscillation. De plus, le facteur
devant ces fonctions trigonométriques est une exponentielle décroissante, l’oscillation est donc amortie.

Pour finir, la solution particulière s’obtient très simplement pour n’importe quel signe de ∆ :

θparticulière(t) =
β

fx
(26)

Pour obtenir la solution générale, il suffit de sommer la solution homogène et la solution particulière.
Dans le cas ∆ < 0, on s’attend à ce que le kilobot finisse avec un angle β

fx
avec le mur. Cependant, pour que

∆ soit strictement négatif, il faut que 4JZfx soit strictement supérieur à 1 d’après l’équation 22. Or fx est
négatif du fait que le mur exerce une force selon −Ð→ux. Nous avons vu plus haut que J était positif. Donc le
coefficient de couplage Z doit être négatif.

7.3.2 Simulation

Nous avons, dans un premier temps, simulé le cas limite ci dessus avec comme paramètres κ = 10
(cette valeur sera conservée par la suite sauf indication contraire), J = 1 Z = −5, θ0 = 0.1 radian et un biais
nul. On obtient les figures suivantes :

Fig 27 - Trajectoire du kilobot Fig 28 - Angle du kilobot

On distingue très clairement des oscillations sur ces figures. Particulièrement sur la figure 27, où le
robot arrive contre le mur avec un petit angle et finit par osciller jusqu’à se décrocher du mur et partir. La
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figure 28 permet de confirmer cette impression, le kilobot est bien en train d’osciller de plus en plus contre
le mur. Le modèle semble assez bien expliquer les oscillations contre le mur. Cependant, si on change l’angle
initial à 0.4 radians en conservant ces mêmes paramètres, on obtient les graphes 29 et 30.

Fig 29 - Trajectoire du kilobot Fig 30 - Angle du kilobot

L’angle initial étant plus grand que précedemment, le kilobot part plus rapidement du mur. De plus,
ce dernier se met à tourner sur lui-même : avoir un coefficent de couplage négatif change la dynamique
de Ð→n qui cherche à s’antialigner de Ð→v et si Z est assez grand le kilobot ne s’arrête jamais dès qu’il entre
en rotation. Ce ne sont pas des oscillations : on voit clairement sur la figure 30 que θ croit. Bien que l’on
puisse observer des kilobots avoir ces comportements, celui-ci s’explique par leur biais. En effet il est possible
d’obtenir des kilobots qui vont en ligne droite et ces derniers ne sont pas décrit par ce nouveau modèle.

Ce modèle inertiel décrit bien les oscillations du kilobot contre le mur mais ne prévoit pas des tra-
jectoires plus simples, comme la ligne droite, expliquées par l’ancien modèle. Cependant, le modèle inertiel
nous permet d’ajouter des couples et de décrire plus efficacement la dynamique sur θ.

7.4 Roulement avec glissement
Nous avons ensuite essayé de considérer que le kilobot faisait un roulement avec glissement contre le

mur. Ainsi, nous avons exprimé la vitesse de glissement u sur le mur pour en déduire la force au contact du
mur. Cette dernière a deux composantes, l’une due à la vitesse parallèle au mur et l’autre due à la rotation
du kilobot sur lui-même. Dans l’équation 27, R représente le rayon du kilobot assimilé dans ce modèle à un
disque.

u = vy +Rθ̇ (27)

Ainsi, on exprime la force du mur selon une composante normale et une tangentielle. La composante
normale est celle exprimée plus haut par l’équation 8. On obtient donc :
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F⊥ = µu (28)

Avec µ le coefficient de frottement tangentiel au contact. De plus, un couple Γ = −µRu est induit selon
Ð→uz par cette force et s’ajoute donc dans l’équation du théorème du moment cinétique. On obtient ainsi les
équations adimensionnés suivantes, en considérant que le kilobot se dirige vers un mur décrit par la droite
x = σ :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

τv v̇x = cos θ − vx − κ ( d
σ
)α xα−1

τv v̇y = sin θ − vy − λ(vy + 1
2
θ̇) = sin θ − (1 + λ)vy − λ

2
θ̇

J θ̈ = cos θvy − sin θvx − τnθ̇ − τr(vy + 1
2
θ̇) = (cos θ − τr)vy − sin θvx − (τn + 1

2
τr)θ̇

(29)

Avec, comme paramètres adimensionnés : κ = αA
γv0d

, τv = mv0
γd

, λ = µ
γ
, J = Iv0

ζd2
, τn = ν

ζd
, τr = µd

2ζ
. De

plus, on notera τ = τn + 1
2
τr. Pour rappel, α est la puissance à laquelle est mis x dans le potentiel, A est

l’intensité du potentiel, γ correspond au coefficient de frottement visqueux de la vitesse, v0 est la vitesse
finale du kilobot en l’absence de mur, d correspond au diamètre du kilobot, µ correspond au coefficient de
frottement tangentiel, I le moment d’inertie du kilobot, ζ le coefficient de couplage entre Ð→n et Ð→v et ν le
coefficient de frottement visqueux de la vitesse angulaire.

7.4.1 Cas limite et simulation

On se place dans le cas d’un régime suramorti, à savoir J ≪ 1, de plus, on cherche à observer des
oscillations du kilobot contre le mur, la dynamique selon l’axe du mur, ici x, n’est donc pas essentielle. On
suppose alors que vx est nul ainsi que sa dérivée et donc on a v ≃ vy et, comme précedemment, on se place
dans le cas des petits angles i.e θ ≪ 1. Les deux dernières équations du système 29 deviennent donc :

⎧⎪⎪⎨⎪⎪⎩

τv v̇ = θ − λ
2
θ̇ − (1 + λ)v

τ θ̇ = (1 − τr)v
(30)

Le terme devant (1 − τr) est rassurant : il n’est pris en compte qu’au contact avec le mur et si τr ≥ 1
on peut s’attendre à observer des phénomènes d’anti-alignement. On peut ainsi exprimer v et v̇ en fonction
de θ à partir de la première équation et, en injectant les valeurs trouvées dans la première équation, obtenir
une équation différentielle en θ.

v = τ

1 − τr
θ̇ Ô⇒ v̇ = τ

1 − τr
θ̈ (31)

τvτ θ̈ = (1 − τr)θ − [λ(1 − τr)
2

+ (1 + λ)τ] θ̇ (32)

Cette équation fait écho à la résolution du cas limite de la partie 7.3.1. On peut aussi noter que
c’est l’équation d’un oscillateur harmonique de masse M = τvτ , de raideur k = τr − 1 et d’amortissement
α = λ(1−τr)

2
+ (1 + λ)τ avec l’angle θ = 0 solution de l’équation différentielle. On a donc trois situations

possibles :
— k > 0 et α > 0, deux régimes sont possibles, avec ou sans oscillation.
— k > 0 et α < 0, le système est anti-amorti, θ = 0 est instable, avec ou sans oscillation.
— k < 0, la solution est instable et il n’y a pas d’oscillation.

L’étude de ce cas limite nous permet de confirmer l’apparition potentielle d’oscillations. En outre,
cela nous permet de savoir quelles valeurs doivent prendre les paramètres dans la simulation. En effet, pour
avoir des oscillations, on cherche à ce que le polynôme caractéristique ait des racines complexes, soit que le
déterminant ∆ soit strictement négatif.

21



∆ = [λ(1 − τr)
2

+ (1 + λ)τ]
2

− 4τvτ(τr − 1) (33)

Etant donné qu’analyser le signe d’une somme s’avère compliqué, on se rend compte que le seul terme
présent uniquement dans le membre de droite de la somme est τv et qu’avec τn et τr de même signe on
obtient bien une solution oscillante et amortie.

On cherche donc à vérifier si on retrouve bien le modèle prédit par le cas limite. Etant donné que dans
ce cas la dynamique du kilobot selon x est négligée, l’emplacement de départ du kilobot est contre le mur.
On se place dans le cas x0 = σ, y0 = 0, θ0 = 0.1, λ = 0.1, τr = 1.5, en fixant J très petit.

Fig 31 - La dynamique selon x est nulle Fig 32 - La dynamique selon x est nulle

On observe bien des oscillations sur les figures 31 et 32 comme attendues avec τv = 10. Cependant, ces
oscillations sont très vite amorties. En simulant le cas du modèle général décrit pas les équations 29, avec
les mêmes paramètres qu’au dessus sauf pour τv = 1, τn = 0.5, J = 5 et un angle initial θ0 = 0.4 radians et le
kilobot vient depuis l’origine, la trajectoire est zoomée pour mieux déceler les oscillations, on obtient ainsi
les figures 33 et 34.

Lorsque que la dynamique selon x n’est plus négligée comme sur les figures 33 et 34, on observe tou-
jours des oscillations. Cependant le kilobot ne sort pas du mur. Nous avons essayé ce modèle avec plusieurs
jeux de paramètres en faisant varier les nouveaux paramètres à savoir λ, J et τr et nous n’avons pu observer
que deux phénomènes distincts : soit le kilobot tapait le mur, ne repartait pas et présentait des oscillations
amorties, soit il repartait, à peu près de la même manière que sur le modèle initial (équations 5 et 6), à
savoir en rebondissant, ce qui n’est pas réellement satisfaisant.

Cependant, la notion de roulement avec glissement semble assez réaliste et conforme à ce qu’on l’on
observe. En effet, nous avons remarqué qu’en changeant la matière du mur, en prenant du bois ou du verre
par exemple, le robot partait plus ou moins vite du mur. Le verre étant plus lisse le robot partait plus
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rapidement que sur du bois, nous en avons donc conclu que le matériau impactait les oscillations et qu’un
phénomène de glissement ou de frottement permettrait d’expliquer cette différence entre matériaux.

Fig 33 - La dynamique selon x n’est plus négligée Fig 34 - La dynamique selon x n’est plus négligée

C’est pour cette raison que nous avons persévéré dans cette voie, en partant du principe que nous
n’avions pas les bons paramètres initiaux. Nous avons donc cherché un moyen de trouver ces paramètres
sans tous les essayer à la main. Pour celà, nous avons réécrit l’équation différentielle couplée 30 sous la forme
d’une équation matricielle. En effet, dans l’approximation des petits angles, on obtient :

⎛
⎜
⎝

θ̇

θ̈
v̇

⎞
⎟
⎠
=
⎛
⎜
⎝

0 1 0
0 − τ

J
1−τr
J

1
τv

− λ
2τv

− 1+
τv

⎞
⎟
⎠

⎛
⎜
⎝

θ

θ̇
v

⎞
⎟
⎠

(34)

L’équation est donc linéaire et le vecteur nul en est solution. Pour la résoudre, on cherche à dia-
gonaliser la matrice. Pour résumer simplement, dès lors que la matrice est diagonalisable, les coordonnées
du vecteur solution seront chacune une combinaison linéaire d’exponentielle de coefficients les différentes
valeurs propres. Malheureusement, il n’existe pas de factorisation simple du polynôme caractéristique de la
matrice en raison des cinq paramètres d’entrée. On obtient tout de même une solution avec le logiciel Wolfra-
malpha, mais celle-ci est inexploitable de par sa longueur et la difficulté à étudier le signe des valeurs propres.

Pour étudier les valeurs propres de la matrice, il nous fallait représenter une fonction avec cinq para-
mètres d’entrée (τn, τv, τr, J et λ) et 3 données en sortie, les valeurs propres de la matrice 34. Le moyen
le plus pratique que nous avons trouvé, est, pour différentes valeurs des paramètres, de calculer les valeurs
propres et de les afficher dans le plan complexe étiquettées par un nombre. Pour revenir aux paramètres qui
ont permis d’obtenir une certaine valeur propre, il nous suffit de rentrer le numéro du point voulu. Nous
avons, en outre, affiché seulement les valeurs propres complexes dont la partie imaginaire est positive. En
effet, le polynôme étant à coefficients réels et de degré trois, les racines sont ou bien toutes réelles ou bien
une seule est réelle et les deux autres sont complexes et conjuguées.
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Fig 35 - Interface graphique Fig 36 - Exemple du point n°7

Les principaux problèmes de cette méthode sont le temps de calcul et l’affichage graphique. En effet,
si chaque paramètre peut prendre dix valeurs différentes, le nombre de matrice à générer et de déterminant
à calculer est de 105 = 100000 et nous devons afficher au minimum 200000 points ce qui est, en plus d’être
irréalisable, quasiment impossible à lire. Nous avons donc affiché différentes valeurs propres sur la figure 35
avec, comme légende, les points verts correspondant au cas où matrice a trois valeurs propres sont réelles,
les points en bleus correspondant au cas où la matrice a une seule valeur propre réelle et allant de pair avec
un point rouge qui représente la valeur propre complexe de partie imaginaire positive.

Fig 37 - Trajectoire du kilobot Fig 38 - Angle du kilobot
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Cependant, ce moyen d’observation permet de trouver des jeux de paramètres pour lesquels une des
valeurs propres de la matrice a une partie réelle positive ce qui correspond au cas où les valeurs de l’angle, la
vitesse angulaire et la vitesse divergent. Ce cas particulier nous intéresse car il correspond en fait au kilobot
se décollant du mur comme observé dans les expériences. Par exemple, sur la figure 36, on voit que les deux
valeurs propres complexes possèdent une partie réelle positive ce qui correpondrait à un cas d’oscillation
non amortie. On simule donc les équations 30 pour un angle initial petit, θ = 0.2 rad, tout en négligeant la
dynamique sur x et obtient les figures 37 et 38.

On trouve ainsi un cycle limite, étant donné que le kilobot gagne en amplitude jusqu’à 1.3 radians
et reste stable par la suite. L’un des reproches pouvant être faits à cette simulation sont évidemment qu’en
négligeant la dynamique selon x, nous ne pouvons pas observer le kilobot partir du mur. De plus, le kilobot
met 200 unités de temps et une quinzaine de périodes à atteindre le cycle limite, ce qui n’est pas du tout
ce qui est observé en pratique. En effet, le kilobot atteint son cycle limite en moins de 10 secondes et de
quelques périodes.

Nous avons cherché quelle est la plage de valeurs complexes que nous pouvions obtenir avec des
paramètres initiaux raisonnables (comme tous positifs par exemple), nous avons généré différentes valeurs
propres et nous avons seulement gardé les valeurs propres complexes dont les parties réelle et imaginaire
étaient positives car ce sont celles qui présentent les cycles limites, on prend la partie imaginaire positive
pour les mêmes raisons que précedemment. On obtient donc la figure 39 qui ressemble à une conique. Malgré
le nombre de simulation faites (∼ 200000), nous avons eu du mal à paver le haut de la conique tandis que le
bas est bien rempli.

Fig 39 - Différentes valeurs propres complexes Fig 40 - Amplitude maximale des valeurs propres

Nous avons remarqué que les jeux de paramètres présents sur la figure 39 présentaient presque tous
des cycles limites et que le kilobot finissait par osciller avec une amplitude constante. Nous avons cherché
quelle était l’amplitude pour chaque point. Nous avons donc gardé un plus petit nombre de points à l’aide
d’une décimation pour pouvoir essayer de paver la conique. Nous avons, par la suite, pour chaque point,
calculé l’amplitude finale pour son jeu de paramètres et, à l’aide d’une barre de couleur, nous avons affiché
la valeur de cette dernière. On obtient la figure 40 et nous remarquons qu’il semble y avoir une certaine
continuité, ce qui est rassurant. En outre, il y a certaines valeurs propres pour lesquelles l’amplitude finale
est supérieure à π

2
, ce qui est particulièrement intéressant car dans le cas où la dynamique selon x n’est pas
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négligé, le kilobot est sensé partir du mur. Nous avons donc repris les paramètres obtenus pour différents
cycles limites et nous avons simulé la trajectoire du kilobot dans le cas où la trajectoire selon x n’est plus
négligée. Par exemple, pour le point 7 décrit plus haut on obtient les résultats suivants :

Fig 41 - Trajectoire du kilobot pour le point 7 Fig 42 - Angle du kilobot pour le point 7

On observe à peu près les mêmes résultats même si les oscillations semblent quelque peu différentes,
il s’agit juste d’un problème d’échelle, de longueur et de temps. On remarque, en outre, que l’amplitude est
la même ainsi que la fréquence (à l’aide d’une transformée de Fourier qui n’est pas affichée ici).

Fig 43 - Trajectoire du kilobot Fig 44 - Angle du kilobot
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On simule maintenant, pour un jeu de paramètres, le cas où l’angle limite dépasse π
2
(une couleur

claire sur la figure 40) ce qui devrait signifier que le kilobot part du mur. Avec le jeu de données τn = 0.23,
τv = 4.84, τr = 7.03, J = 8.17 et λ = 0.5, on observe une amplitude d’oscillation finale de 2.20 radians ce qui
ne devrait pas être le cas si la dynamique selon x n’est pas négligée.

Le kilobot s’éloigne bien du mur une fois qu’il a passé l’angle de π
2
et part en overshootant, c’est-à-dire

que le kilobot garde une certaine inertie angulaire et met du temps avant de s’aligner parfaitement avec sa
vitesse.

Fig 45 - Trajectoire du kilobot dans la boite

Malheureusement, si on généralise le mur à une boîte (Figure 45), on se rend vite compte que le kilobot
ne repart pas suffisamment loin dans l’arène et reste bloqué dans le coin avec le mur du haut qui le pousse à
tourner dans le sens horaire et le mur de droite qui le pousse à tourner dans le sens antihoraire. Même si le
modèle présente ce défaut, il a tout de même l’air de bien expliquer la rotation du kilobot et se justifie bien
physiquement.

7.5 Roulement avec et sans glissement
Nous avons donc continué sur la piste d’un roulement avec glissement, en considérant cette fois le

frottement solide classique exprimé à partir de la loi de Coulomb. On suppose que le contact entre le mur
et le kilobot est régi par un coefficient d’adhérence µ, la force que peut fournir le mur est alors contrainte
à rester dans le cône de frottement : un cône de demi-angle au sommet arctanµ. Il y a donc deux régimes
différents. Lorsque ∑F∥∑F⊥ ≤ µ, il y a adhérence entre les deux surfaces : on est alors dans le cadre d’un roule-

ment sans glissement. A l’inverse, lorsque ∑F∥∑F⊥ ≥ µ, la force de frottement tangentielle est plus faible que la
force tangentielle due à la propulsion du kilobot, ce dernier va alors glisser. Dans les deux cas, la force de
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frottement tangentielle appliquée au point de contact engendre un couple :
Ð→
R ∧ÐÐÐ→Fmur = RFyÐ→uz.

Lors du roulement sans glissement, la vitesse de translation perpendiculaire au mur est fixée et vaut
vy = −Rθ̇. On peut alors transformer les équations dimensionnées 1 et 3 et obtenir le système suivant :

Iθ̈ = ζ(−Rθ̇ cos θ − sin θ) −Ωθ̇ +RFy (35)

−mRθ̈ = F0 sin θ − γRθ̇ + FMur
y (36)

mv̇x = F0 cos(θ) − γvx + FMur
x (37)

On peut alors résoudre pour FMur
y et remplacer pour n’avoir plus que des dynamiques en θ et en x à

résoudre :

FMur
y = −mRθ̈ − F0 sin θ + γRθ̇ (38)

Iθ̈ = ζ(−R cos θ − sin θ) −Ωθ̇ −mR2θ̈ −RF0 sin θ − γR2θ̇ (39)

Il va être plus simple de travailler avec les équations adimentionées pour comparer ce modèle avec les
autres, par la suite on notera FT la force tangentielle adimentionnée. On obtient donc comme paramètres
adimensionnés τv = mv0

γd
, J = Iv0

ζd2
, τn = ν

ζd
.

Si l’on fait l’hypothèse que θ ≪ 1 ce qui correspond géneralement bien aux conditions de roulement
sans glissement et que l’on suppose alors que le robot est en contact constant avec le mur : vx = 0, on voit
alors apparaître un nouvel oscillateur harmonique amorti à partir des équations 38 et 39.

FT = − θ̇
2
− τv θ̈

2
− sin θ (40)

(J + τv
4
)θ̈ + (τn +

3

4
)θ̇ + θ

2
= 0 (41)

On remarque alors que cet oscillateur est toujours amorti car τn ≥ 0. On regarde alors les équations
pour le roulement avec glissement avec FT = −µ(cos θ − vx) sign(vy + θ̇

2
), on a alors :

τv v̇y = sin θ − vy − µ(cos θ − vx) sign(vy +
θ̇

2
) (42)

Jθ̈ = cos θvy − sin θvx − τn −
µ

2
(cos θ − vx) sign(vy +

θ̇

2
) (43)

Au vu de la difficulté que présente la résolution analytique de ce problème, nous sommes directement
passés à la simulation, en restreignant d’abord la dynamique en x dans le but vérifier notre modèle.

La dynamique collée au mur est toujours amortie quel que soit l’angle d’incidence initial avec le mur.
En effet, pour avoir des oscillations, le modèle alterne entre du roulement avec glissement et du roulement
sans glissement pour lequel la dynamique est celle d’un oscillateur harmonique amorti. Une trajectoire est
présentée figure 49. Nous avons donc choisi de poursuivre sur le modèle du frottement visqueux.
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Trajectoire Orientation Vitesse

Fig 49 - Graphes pour une simulation collé au mur réalisée pour : θ0 = 0.1, τv = 0.2, τn = 0.1, J = 2, µ = 0.5

8 Conclusion scientifique
Durant ce stage, nous avons essayé d’expliquer la rotation de kilobot contre le mur. Bien que nous

n’ayons pas trouvé de modèle expliquant parfaitement ce phénomène, nous avons exploré de nombreuses
voies et nous avons pu trouver des résultats, plus ou moins convaincants, expliquant le phénomène physique
observé. Le modèle de frottement avec glissement est l’explication qui décrit avec le plus de précision les
expériences. Il faut cependant garder à l’esprit que les kilobots sont tous uniques malgré la volonté de les
standardiser et qu’il est complexe d’essayer de décrire les comportements de chaque individu par un modèle
général. En effet, chaque brosse à dent possède un peu plus d’un millier de poils ([5]) et chaque kilobot
(la machine sur la figure 1, pas l’ensemble) présente ses propres spécifités. En effet, la vitesse du kilobot
ne lui est conférée que par la vibration de ses moteurs et ceux-ci peuvent présenter une disymétrie entre
le moteur de gauche et celui de droite, chaque moteur étant unique, il en sera de même pour cette disymétrie.

Ainsi le modèle du glissement solide préserve les résultats et trajectoires obtenus avec l’ancien mo-
dèle hors du mur et explique déjà un peu mieux les différentes rotations qui peuvent être obtenues lors
des expériences. Il ne parcourt pas l’arène sur toute une trajectoire mais il semble être toutefois une piste
prometteuse pour la suite. Même si ce modèle n’est pas forcément le bon, nous avons tout de même exploré
et éliminé de nombreuses pistes et différents modèles, comme la variation de τn avec la force ou encore des
potentiels/forces qui n’ont pas été présentés dans ce rapport car ils n’ont été ajoutés que brièvement pour
observer leurs effets ou vérifier des hypothèses.

L’étude de la rotation des kilobots contre le mur reste un sujet sur lequel de nombreuses hypothèses
restent possibles et qui est loin d’être complètement traité, il faut trouver un modèle suffisamment simple
pour être exploitable et suffisamment complet pour décrire la dynamique en tout point de n’importe quel
kilobot.
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9 Conclusion personnelle
Ce stage de six semaines dans le domaine de la recherche aura été très enrichissant. En effet, bien que

nous ayons la chance en double licence d’avoir des stages d’immersion recherche en deuxième année, ces der-
niers durent deux mois à hauteur de quatre heures par semaine. Ils ne permettent pas de réaliser pleinement
ce qu’est le travail de chercheur. Lors de ce stage, nous avons pu nous rendre compte de la difficulté que
pouvait présenter cet aspect du métier, à savoir, n’avoir aucune réelle indication et chercher par nous-même
comment résoudre le problème qui a été posé.

Ce stage a été, de surcroît, une expérience professionnelle très intéressante où nous avons évolué dans
une équipe avec des chercheurs et des doctorants ce qui nous a permis de discuter, tester et même débattre
de différentes idées de forces et/ou de modèles avec différentes personnes très qualifiées dans un éventail de
domaines très variés.

Nous avons, en outre, pu assister à de nombreux séminaires sur une grande quantité de sujets. Nous
avons même pu réaliser deux exposés, l’un pour le sémainaire des matières programmables et l’autre pour
le séminaire des étudiants, ce qui nous a permis de préparer un exposé sur le travail que nous avions fait
jusque là. Nous avons du synthétiser un travail de plusieurs semaines sur une présentation d’une dizaine de
minutes ce qui fut très instructif en l’absence d’une soutenance de stage.

Bien que nous n’aspirons pas à des carrières dans la recherche, ce stage aura néanmoins été une
formation particulièrement intéressante au cours de laquelle nous avons pu appliquer les connaissances que
nous avons développées tout au long de nos trois années de licence, tant sur les plans de la physique et des
mathématiques que sur le plan informatique.
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