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Résumé

Dans le cadre de notre derniére année de double licence Mathématiques et Physique, nous avons eu
Popportunité de réaliser un stage de six semaines dans le milieu de la recherche en physique. Nous avons
choisi un stage au laboratoire Gulliver dans le cadre de la matiére active, pour pouvoir mettre en oeuvre
les compétences en mathématiques, en physique et en informatique développées durant notre cursus. Le
laboratoire Gulliver posséde en effet un essaim de robots utilisé dans le but de simuler de la matiére active,
c’est-a-dire, qu’a partir de comportements individuels, il est possible d’obtenir un comportement collectif
émergent. Nous avons été chargé d’étudier la collision des robots avec les murs, cette derniére étant assez
particuliére et, a ce jour, inexpliquée. A partir de différents modéles, nous avons simulé les comportements
des robots contre les murs, et bien que nous n’ayons pas trouvé de modéle qui nous satisfasse parfaitement,
nous avons réussi a trouver un modéle qui décrit assez bien la situation physique.

During the last year of our double major in Mathematics and Physics, we had the opportunity to
do a six week research internship in a laboratory. We chose an internship at the Gulliver laboratory in the
active matter research domain, in order to be able to put into practice the skills in mathematics, physics
and computer science developed during our studies. The Gulliver laboratory has indeed a swarm of robots
used in order to simulate active matter, that is to say, from individual behaviors, it is possible to obtain
emergent collective behavior. We have been asked to study the collision of the robots with the wall, it being
quite particular and, to date, unexplained. Using different types of model, we have simulated the behavior
of the robots against the wall, and although we did not find one that suits us perfectly, we managed to find
a model that describes the physical situation quite well.
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1 Introduction

Durant ce stage, nous nous sommes interessés & la robotique en essaim distribuée : cela signifie que
P'on étudiait un grand nombre de robots possédant tous leur propre puissance de calcul et n’étant pas glo-
balement coordonnés. Le laboratoire cherchait, durant notre stage, & constituer un essaim d’une centaine de
robots : des kilobots. Disposant deja de quelques robots, notre travail, pendant les quatre premiéres semaines
de stage, a été de trouver un modéle mathématique pour décrire le comportement expérimental d’un unique
kilobot.

L’essaim de robot est supposé étre capable de reproduire 1’expérience initiale des grains marcheurs
[1], car ces deux expériences étudient des disques autopropulsés. On s’attend a ce que les mémes équations
régissent le mouvement. Cependant, expérimentalement, on observe lors des contacts avec un mur des phé-
nomeénes d’oscillation qui ne sont pas décrits par le modéle des grains marcheurs. Les équations initiales
fonctionnant trés bien pour les déplacements en ’abscence de mur, nous avons cherché a les conserver en
ajoutant différents éléments pour décrire le phénoméne oscillatoire observé. Les équations initiales ne possé-
dant pas de solution analytique, nous avons approximé numériquement leurs solutions dans le cas général et
tenté de résoudre les cas limites.

Ce stage s’est déroulé au laboratoire Gulliver dans la branche consacrée a la matiére active : Il s’agit
d’une branche de la physique statistique étudiant des systémes en dehors de I’équilibre thermodynamique.
Les systémes étudiés cassent la symétrie de renversement du temps, se déplacent ou exercent une force sur
leur environnement. Ce domaine décrit des phénomeénes & des échelles trés variées : des mouvements de bancs
de poissons ou de nuées oiseaux aux particules colloides & 1’échelle des cellules.

Ces modéles sont trés utiles dans le cadre de la biologie, ils permettent de mieux comprendre comment
émergent des comportements de groupe comme un mouvement collectif lorsque les interactions sont a courtes
portées a ’échelle du groupe. Cette description convient particuliérement & 1’étude d’insectes sociaux comme
les fourmis ou les abeilles. Notre encadrant, Jérémy Fersula, poursuit sa thése entre la matiére active et
la robotique, en utilisant un grand nombre de robots aux fonctionnalitées rudimentaires pour caractériser
les comportements de particules actives dont on peut faire varier différents paramétres comme la vitesse, la
distance des interactions ou encore la nature de ces derniéres.

L’objectif de I’étude des kilobots est de pouvoir créer des systémes complexes ot un essaim de kilobots
pourrait réaliser des taches comme le transport de piéces plus grandes qu’eux. Le but de I’étude d’un point
de vue physique est de déléguer la communication entre robots aux interactions physiques (c’est-a-dire des
collisions). On espére alors observer ’apparition de mouvements collectifs et, pourquoi pas, explorer différents
algorithmes pour choisir la direction de ces mouvements.



2 Présentation des kilobots

Les kilobots (Fig sont les robots utilisés dans le laboratoire et sur lesquels nous nous sommes basés
pour faire nos simulations. Ils sont composés de trois pattes rigides et de deux moteurs, I'un a droite et 'autre
a gauche, les faisant vibrer & une certaine fréquence choisie par I'utilisateur : 'inclinaison des trois pattes et
la différence de vitesse entre les deux moteurs leur permet de se déplacer et de grossiérement contrdler leur
direction. Ils possédent en outre une LED pouvant afficher du rouge, du vert ou du bleu, d'un capteur de
lumiére et ainsi qu'un émetteur-transmetteur infrarouge. Ces derniéres particularités servent principalement
a programmer des comportements particuliers dans le cas d’essaim ou de murs particuliers, répulsifs par
exemple.

Le probléme de ces kilobots est qu’ils ne possédent que trois pattes et que, lors des expériences, ils
présentent des comportements trop chaotiques et de ce fait non prévisibles. Pour pallier ce probléme, les
kilobots sont montés sur deux brosses a dents (Fig [2]) ce qui leur permet d’avoir des pattes en plus grand
nombre et qui sont plus souples que les pattes originelles. De plus, on déforme les poils de la brosse a dents
(Fig|3) de fagon a créer une asymétrie entre ’avant et Parriére du kilobot ce qui leur permet d’avancer dans
une direction bien determinée. De plus un exosquelette cylindrique leur est ajouté afin d’avoir une zone de
contact constante de chaque coté du kilobot, et qui est utilisée pour ’analyse d’image.
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Ainsi, dorénavant et pour le restant du rapport, le terme kilobot fera référence a ’ensemble kilobot
monté dans son exosquelette avec ses brosses & dents. Si un cas litigieux venait & se présenter, nous utiliserons
les termes complets pour ne pas préter a confusion.

3 Mise en équation du probléme

Le modéle initial est issu de article [3] qui décrit la dynamique des grains marcheurs. On place le(s)
kilobot(s) dans une aréne carrée centrée en 0. On définit les axes de la facon décrite sur la figure [4 et on se
place ainsi dans le plan, & savoir R? défini par le repére direct (0,1, ,’LT;) avec 0 le centre de l'aréne défini
sur la figure |4l Par la suite, nous nous placerons dans R®, en rajoutant le vecteur u, au repére précédent de
maniére & ce que ce dernier soit direct. Ce changement est mis en place notamment pour utiliser le produit
vectoriel et décrire des axes de rotations, mais le mouvement, lui, restera dans le plan.



Fig - Aréne utilisée (Le repére est donné a titre indicatif)

Un kilobot est modélisé par un point de masse m possédant une orientation de prédilection définie
par le vecteur unitaire 72 et subissant une force Fy 7 le propulsant dans cette direction. Le kilobot est aussi
décrit par sa vitesse U et par le frottement sur le sol, de coefficient v qui empéche la vitesse ¥ de diverger, ce
qui permet de définir une échelle des vitesses a partir de cette vitesse finale, de norme notée vy. En ’absence
de mur, le principe fondamental de la dynamique nous donne alors I'équation [I] que 'on adimensionnera par
la suite.

mT'}):FOﬁ)—fy? (1)

Pour adimensionner cette équation, nous avons déja défini I’échelle des vitesses plus haut. On définit
deés lors I’échelle des longueurs & partir du diamétre du kilobot. En outre, ’échelle des temps est d’ores et
déja définie a partir du rapport de la longueur et de la vitesse. On obtient ainsi une équation adimentionnée

. mFy .
pour la vitesse avec 7, = 725 :

V=T -T (2)

Pour la rotation du kilobot, le modéle initial suppose trois choses : I'existence d’un couple qui tend a
aligner 7 sur v, l’existence d’un frottement de coefficient Q qui empéche 6 de diverger et le fait que I’on
puisse négliger le moment d’inertie (par rapport a son axe de rotation, a savoir la droite dirigée par u, et
passant par le centre du kilobot) du systéme devant les forces d’amortissement visqueux, le théoréme du

L . cosf v
moment cinétique nous donne alors l’équatlon en notant 7 = (sin 9) et U = (vz)
Y

16 = ¢(cos Bv, - sin B, ) — Q0 (3)



Or, on suppose que I < 1, et on obtient ainsi une équation en 6 qu’il est facile d’adimensionner avec

Q.
Tn:TC'

7m0 = cos Qv — sin Gu,, (4)

Pour modéliser leur comportement réel, un biais adimentionné a g = gx ino ,avec 3 le biais dimensionné,

est alors ajouté sur 6, ce qui correspond au fait qu’en pratique aucun robot ne va exactement en ligne droite. Il
est ensuite possible d’ajouter différentes forces extérieures pour voir comment elles influent sur notre modéle.
Pour vérifier ce modéle, il est possible de faire ’expérience sur un plan incliné. Cela permet ’ajout d’une
force supplémentaire qui s’applique alors & la dynamique de ¥ et qui va donc nous donner des trajectoires
non triviales. C’est une des expériences qui a été réalisée avant notre arrivée par Jérémy Fersula et qui justifie
notre confiance en ce modéle. Finalement le modéle adimensionné retenu est le suivant :

7 V=T T+ Fomt (5)
7m0 = cos Qv,, — sin Qu,, + B (6)

On peut, dans ce modéle adimensionné, considérer que 7, et 7, sont les temps caractéristiques que
. . . — — < 57 . . N L
prennent les directions respectives de 77 et v a s’aligner entre eux : la direction finale & un moment donné est
alors determinée par le rapport . Lorsque 7, est suffisamment petit, on peut alors approximer le membre
n

—
, . . — . — . N
de gauche par 0 dans l’equatlonet ainsi remarquer que v s’aligne sur 7 + Fext, ce qui semble étre une assez
bonne approximation de la réalité et qui simplifira les calculs des cas limites. Les différents comportements

" o 1 0 .
sont présentés sur les figures || et |6 avec comme conditions initiales 7 = (O) et U = (21] )7 I’orthogonalité
0
permettant de mieux comprendre quel vecteur s’aligne sur l'autre.
Le point de départ de la trajectoire est 'origine. Pour mieux comprendre la trajectoire du kilobot, la
couleur du point en question dépend linéairement du temps pour avoir les couleurs de I'arc-en-ciel. En outre,

lorsque ce n’est pas précisé, les graphes montrés dans le rapport sont obtenus avec 7, =1, 7, =1, B=0 et le
kilobot est placé sur I'origine avec une vitesse v et angle 6 initiaux nuls (pour 7 et ).

Trajectoire du kilobot Trajectoire du kilobot
104 10
5 5
g ) e 0
s -5
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x [do] x
Fig[f]- 7, =0.1 et 7, = 1 Fig[f]- 7, =10 et 7, = 1



4 Description du phénomeéne étudié

Les équations présentées précédement fonctionnent bien généralement, mais ne rendent pas compte
des différents phénoménes apparaissant sur les parois de ’aréne. En effet, les kilobots oscillent sur la paroi.
On observe que 'amplitude de ces oscillations augmente et, en fonction de la vitesse du robot, il va soit
rester bloqué contre le mur dans un cycle limite soit se libérer. Sur ce [gif, on observe bien les oscillations du
robot contre un mur horizontal. On remarque, en observant davantage de robots, a différentes vitesses, que
la fréquence d’oscillation reste constante, aux alentours de 0.5 Hertz.

Différentes expériences ont permis de faire 'acquisition de la trajectoire et de 'orientation du kilobot
au cours du temps, ainsi nous pouvons observer les deux comportements sur la figure [[1]: on remarque que,
lorsque le robot a peu de vitesse, le cycle limite est atteint aprés une oscillation, expérimentalement, ce
nombre reste toujours dans cet ordre de grandeur.
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Fig|11|- Comportement typique des kilobots contre le mur dans les cas avec ou sans décrochage


https://media.giphy.com/media/wQhakkvVoranGtBhfb/source.gif

On observe d’ailleurs 'influence du biais sur la trajectoire, on voit que, pour le cas a faible vitesse, la
direction oscille autour d’un point en dessous de zéro, ce qui a pour effet de faire dériver le robot le long du
mur. Cependant, le modéle décrit plus haut prédit un rebond classique entre particule et mur. Il y a donc la
nécessité de prendre en compte des paramétres du probléme qui ont été négligés dans la mise en équation.

5 Données réelles

Pour acquérir des données réelles, et ainsi pouvoir essayer de comprendre plus efficacement le phé-
noméne d’oscillation des kilobots, nous avons di recupérer des données & partir de kilobots en action. Les
expériences sont réalisées sur l'aréne présentée plus haut (Figure . On cherche & observer des oscillations
contre le mur, donc on cherche a filmer seulement les moments ou le kilobot tape le mur. On restreint donc
la zone d’étude du kilobot et on fixe la caméra pour qu’elle ne capture que l'interieur du rectangle défini par
les pastilles violettes de la figure

Fig|13|- Image depuis la caméra

Fig|12|- Réalisation de ’expérience

5.1 Mise en marche

Comme vu sur la figure [T} les kilobots possédent deux moteurs vibratoires. En outre, certains pos-
sédent des biais et les exosquelettes peuvent avoir des imperfections et eux aussi, ajouter du biais. Grace au
logiciel kilogui [4], nous avons pu régler la puissance de chacun des moteurs individuellement ce qui permet
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de controler la direction du kilobot et ainsi de contrer son biais, le faisant aller plus ou moins droit.

Nous avons donc fait rencontrer des kilobots et le mur. Nous avons fait des mesures avec trois kilobots,
I'un présentait un biais a gauche, ’autre a droite et enfin le dernier ne présentait qu’un trés léger biais. Pour
chaque expérience, nous envoyions le kilobot sur le mur avec un réglage sur les moteurs de telle sorte a ce
qu’il aille droit. Nous avons fait cette manipulation avec 5 réglages différents sur les moteurs, ce qui avait
pour but de changer la vitesse finale du kilobot au moment ou il frappait le mur.

5.2 Acquisition

Pour chacune des expériences, on filme le kilobot dans la zone de I'expérience pendant deux minutes,
et si le kilobot venait & en sortir on le replace dedans. La caméra filmant a trente-trois images par seconde,
on obtient un peu moins de quatre mille images de I'expérience a partir du logiciel Pixelink.

Ensuite, dans le but d’analyser ces données plus efficacement, Jérémy Fersula a mis en place un pro-
gramme qui, & chaque image soustrait le fond, a savoir la figure (qui été coupée pour ne garder que le
noir foncé et le noir un peu plus clair du sol de l'aréne) dans le but de pouvoir détecter le kilobot.

La seconde partie du programme permet de détecter I'orientation du kilobot. Pour ce faire, de nom-
breux procédés ont vu le jour mais celui retenu est celui sur la figure L’exoquellette est recouvert pa,r
un anneau & moitié coloré en noir et & moitié en blanc. L’avant du kilobot est donc au milieu de la bande
noire et I’arriére est au milieu de la bande blanche. Finalement, aprés le passage par le traitement d’image,
on obtient un classeur (.csv) qui contient les paramétres de la série d’images (comme 'intensité moyenne).
Mais il y a aussi (et surtout) autant de lignes que d’images et trois colonnes contenant les coordonnées z,
y et 6 du kilobot. Le temps de la prise de I'image n’est pas indiqué car nous connaissons déja le nombre
d’image par seconde et donc le nombre de seconde entre chaque image.

Il nous semblait important de noter que nous avons eu de nombreux problémes avec cette détection
d’image, comme sur la figure [T5] ou le kilobot semblait se retourner instantanément et surtout sans raison.
Nous avons finalement réussi a obtenir des données expérimentales cohérentes qui nous ont permis d’étudier
plus précisément le mouvement des kilobots.

Position de la particule en fonction du temps
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Fig|14]- Kilobot vu de dessus Fig|15(- Exemple de mauvaise détection
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5.3 FEtude des données

Durant ce stage, nous avons principalement travaillé sur un modéle physique plus complet pour les
kilobots. Bien que nous n’ayons pas trouvé de modéle répondant parfaitement & nos attentes, nous avons
exploré bon nombre de pistes.

Position de la particule en fonction du temps _ Position de la particule en fonction du temps
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Fig|(16|- Un exemple de données réelles Fig|17- Un second exemple

Finalement, les données obtenues ne sont pas satisfaisantes, par exemple, sur la figure [I6] le robot est
opposé au mur mais tourne quand méme dessus et sur la figure [I7] le robot oscille tout en avangant ce qui
ne correspond pas du tout & ce que nous avons observé lors des manipulations.

Nous n’avons pas eu l'occasion de refaire des mesures ni de se plonger dans le code d’analyse d’image
précédement développé, et donc de comprendre pourquoi les résultats n’étaient pas tous concluants et donc
exploitables. Malgré des mesures critiquables, ces expérimentations nous ont permis de mieux comprendre le
phénomeéne que nous étudions et les différentes oscillations que pouvaient présenter les kilobots en fonction
de leur biais, leur vitesse de collision, ou encore ’angle avec lequel ils rentraient dans le mur.

6 Mise en équation et simulation

Dans un premier temps, nous avons é¢tudié numériquement les équations initiales [5] et [6] Nous avons
donc codé en python sur le logiciel "PyCharm" en utilisant un git pour pouvoir développer différents modéles
a la fois, nous permettant ainsi de pouvoir restaurer d’anciennes versions et avoir une trace de chaque code
produit. Cela nous a aussi permis de travailler & deux sans supprimer tout le travail ayant été produit par
I'un ou par l'autre.

6.1 Code implémenté

Lorsque nous avons débuté le stage, notre encadrant, Jérémy Fersula, avait déja commencé a mettre
en place une interface graphique et un programme de résolution d’équation. Nous avons donc implémenté
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de nouvelles fonctionnalités et modifié certaines déja présentes.

Pour résoudre les équations en question, dans un premier temps, Jérémy a utilisé la fonction odeint
du module scipy.integrate puis nous avons basculé sur le schéma de Runge-Kutta 4 nous permettant d’avoir
plus de possibilités sur la résolution et notamment sur I’ajout d’'un bruit angulaire sur 'orientation de la
vitesse et de I'axe du kilobot.

X0 i SCALE:
0 1 200
Position de la particule en fonction du temps
Y.0: A OFFSETX: + . * .
0 0 0
VO_X: TR: OFFSETV:
0 0 0 101 [
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0 20 0
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0 50 1 T 0 4 o4 L
-
<V NOISE:
IV Plot8 V¥ Plot Simulation
1
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1 0 Load parameters X [dO]
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0 00
L1

a€d| #Q=

Fig (18| - Interface graphique finale

Nous avons rajouté divers graphes sur l'interface graphique, notamment en permettant d’importer
des données expérimentales, de pouvoir visualiser I’angle des vecteurs 7 et v et de regarder s’il y a des
phénomeénes d’oscillations par exemple. Nous avons mis en place une transformée de Fourier pour trouver
la fréquence d’oscillation du kilobot contre le mur. L’échelle de temps n’étant pas la seconde, la transfor-
meée de Fourier n’est pas vraiment exploitable mais permet de savoir si la fréquence d’oscillation est constante.

Nous avons implémenté des boutons permettant de rapidement charger et sauvegarder des configura-
tions données. En effet, comme on peut le voir sur la figure[I8] nous avions plus d’une vingtaine de paramétres
et il nous semblait complexe de devoir se rappeler la valeur de chaque paramétre pour observer un phénoméne
donné.

Un des problémes que nous avons rencontrés fut celui du temps de calcul. En effet, 'interface graphique
a pour but de pouvoir modifier rapidement des paramétres et, de ce fait, pouvoir en voir rapidement les
résultats. Etant donné que nous étions sur nos machines personnelles, peu puissantes, nous avons essayé de
réduire les calculs au maximum en ne calculant, par exemple, la solution de ’équation différentielle ou la
transformée de Fourier que lorsque c’était nécessaire,.
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6.2 Modelisation du mur

Sur les conseils de notre encadrant Olivier Dauchot, nous avons défini un puit de potentiel en 2D de

la forme suivante :
-2 ()]

Avec o la distance du mur au centre et o > 1 et pair (dans nos simulations « = 20) fixé pour avoir
un potentiel lui aussi pair dont l'intensité est représentée par A. Le potentiel est donc un carré de centre
l'origine et de coté o. L’idée étant de modéliser un puit de potentiel infini tout en préservant la continuité,
afin de ne pas avoir a faire de test de contact entre le kilobot et le mur. A partir du potentiel, on obtient la

force du mur du fait que F= YV

F(z,y) = —A%(I"*?T; +y* 'y (8)

Par la suite, on adimensionne ’expression de la force pour obtenir le modéle suivant en ajoutant la
force au modele [5] [6] définie dans la partie [3] :

: 9)

T =TT k() (@ )
o8  =cosbv, —sinfv, + 3

_ mkFy _Q _ A d _ aA N . . L
Avec 7, = T3, T, = 1 B =p0x Gog €t K = Juod comme paramétres adimensionnés, nous avons donc

simulé la trajectoire d’un kilobot avec ce potentiel :

_Position du kilobot en fonction du temps _Position du kilobot en fonction du temps

10 4 r 10 r

y [do]
o
1
T

y [do]
o
F :
T

-5 4 L =5 I

~10 4 L -10 4 +

T T T T T

-10 -5 0 5 10
x [do]

T T T T T

-10 -5 0 5 10
x [do]

Fig [19]- 6 = 0.4 Fig [20]- 6 = 0

Les trajectoires observées sont presentées sur les figures [I9] et 20] pour différents angles 6y exprimés
en radians (et ce, tout le long du rapport) : on observe alors que le kilobot rebondit contre le mur ou bien,

14



dans le cas limite, s’aligne contre celui-ci.

Sur la figure le kilobot rebondit sur le mur similairement & un rayon lumineux sur un miroir, a la
différence prés que le kilobot reste plus longtemps en contact avec le mur. Dans tous les cas, ce n’est pas du
tout le résultat attendu, il faut un modéle plus adapté.

En outre, on remarque sur la figure [20| que le kilobot tape le mur et garde la méme direction. Ce n’est
évidemment pas observable en pratique notamment du fait de I'imperfection des kilobots et de leur asymétrie
entre les deux brosses a dent. Pallier ce probléme est plus simple que résoudre le précédent : nous avons
simplement ajouté un bruit angulaire sur orientation de 7 et ¥ a chaque pas de temps dans la résolution
de ’équation différentielle.

7 Les différents modéles proposés

7.1 Friction avec le mur

La premiére idée que nous avons explorée est celle de la friction avec le mur. On suppose alors
I'apparition d’une composante tangentielle & la réaction du mur, le point d’application de cette force étant
le point de contact avec le mur, ce qui va alors aussi générer un couple et induire un nouveau couplage en 6.

el ——

L’expression retenue est alors, avec ¢ le coefficient de frottement : Fiottement = qﬁﬁ AU dont la composante
sur z (la seule non nulle) serait ajoutée sur le membre de droite de ’équation |§| et permettrait d’avoir une
vitesse angulaire qui varierait en fonction de la vitesse et de la force du mur. Le modéle dimensionné est
obtenu comme précedemment dans la partie [3| & savoir avec le principe fondamental de la dynamique et le
théoréme du moment cinétique :

mv =i -7 + A% (x° g +y* ) (10)
. —> A

Q0 = ((cos vy —sinfv,) + p(F AT), + 3

5 2
Avec 1, = ’:TF;, Tp = d%, B = Cﬁ = K= 'y(:)fd’ W= 4)2‘);", on obtient le modéle adimensionné suivant :
B =TTk (4) @+ T -
. —

T8  =cosOuvy —sinbv, + u(F A ).+

Position du kilobot en fonction du temps Position du kilobot en fonction du temps

)

y [do]
o
¥ 1do]
°
%

~10 -10

x [do]

Fig-,u:O Fig—u:O.S
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Position du kilobot en fonction du temps

10 4

-5

104

T T T
-10 -5 0 5 10
x [do]

Fig—uzl

On simule donc le modéle [L1] et on obtient les figures ci-dessus dont le résultat est peu concluant, le
kilobot n’oscille pas.

En effet, les figures 21} 22] et 23] montrent clairement leffet de cette force, & savoir maintenir le kilobot
prés du mur et essayer de 'empécher de partir. Cet effet est d’autant plus notable que, lorsque p est grand,
le kilobot ne bouge plus dés lors qu’il touche le mur. En fait, cette force modélise plutot une aréne dont les
bords seraient recouverts de ruban adhésif double face, on aurait pu s’attendre, au vu de son expression,
qu’elle ne produirait pas d’oscillation. Cependant, la premiére force & laquelle on pense lorsqu’on néglige des
effets physiques est la force de frottement.

7.2 Variation de 7, en fonction de la force

En partant de I'observation que 7 et ¥ ont tendance & se désaligner lorsque le kilobot est collé au
mur, nous avons eu l’idée de faire varier 7, en fonction de la force et de rendre ce dernier négatif dés lors que
la force appliquée devient grande pour que 72 et U tendent & se désaligner. On aurait ainsi © qui cherche
a s’aligner sur 7 tandis que 7 cherche & s’éloigner de v .

Nous avons donc pensé & exprimer 7, de la maniére suivante, avec ¢ un coefficient adimentionné fixé
et avec 7,,, le 7, initial, présent en ’absence de mur :

— —
Tn(F') = Tng =l ]| (12)

Le modéle reste le méme mais 7,, dépend dorénavant de la force :

i ST T r () (@ ) "
—
(Tng — || F]|)0 = cosbv, —sinbuv, + 3
Avec 1, = ’Z:TF;, Tne = d%, 8= B x ino et Kk = ﬁ‘:d. On simule donc ce modéle pour différentes valeurs

de c:
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Position du kilobot en fonction du temps,

y [do]
o
"

-5

-10 4

Position du kilobot en fonction du temps,

L -10 A

Sur les figures [24] [25] et [26] nous avons regardé comment ¢ agissait sur le mouvement du kilobot. Le
résultat ne présente aucune oscillation et surtout, pour des valeurs de c assez proches, des résultats trés
différents pouvaient étre obtenus. Nous n’avons pas davantage creusé cette voie 1a, en changeant de fonction
par exemple, car elle nous semblait difficilement justifiable physiquement et n’avait pas I’air trés prometteuse.

Aprés des modéles naifs reposant surtout sur I'observation, nous avons remis en cause les hypothéses
initiales du modéle. En premier lieu, nous avons considéré que le moment d’inertie n’est pas nul, en effet,
celui-ci avait été négligé pour le modéle des grains marcheurs. Pour les kilobots, il ne nous semble pas
pertinent de le négliger, cela nous a permis alors d’avoir des équations du second ordre sur 6 et rend plus
simple 'apparition de phénomeénes oscillants. Nous avons en premier lieu essayé le modeéle adimensionné sans
aucune force tangentielle. Le modéle selon ¥ reste inchangé.

=10 =5 0
% [d0]

Fig— c=0

10

Position du kilobot en fonction du temps

-5 0
x [do]

Fig[25]- ¢ =1

10

y [do]
=]
s

-5

~10 4

7.3 Modéle Inertiel

T
-10
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. «
T, V= —-0-K (7) (x* Yy +y* (14)

Avec 1, = T;LTI:;’ et k= %. En repartant de I’équation |15 obtenue & partir du théoréme du moment cinétique,
sans négliger le moment d’inertie cette fois-ci, on obtient une équation adimensionnée :

16 = ¢(cosbv, —sinbvy,) -6 (15)
On peut ainsi adimensionner cette équation et obtenir une nouvelle formule :
JO = B+ Z(cos O, —sin v, ) — 0 (16)

. . . . L, A .. . . . d
Avec J = %, le moment d’inertie adimentionné, 3 = § x QLUO, le biais adimentionné et Z = %, le

coefficient de couplage adimentionné. Le modéle reste le méme selon la vitesse et devient alors :

. d (03
T =R T K(f) (@Y + 4oV (17)
g
JO = B+ Z(cos B, — sinfv,) — 6 (18)

7.3.1 Cas limite

On cherche a résoudre analytiquement ces équations dans certains cas limites pour observer le modéle.
On se place donc dans le cas ot le kilobot arrive sur le mur de droite avec une direction dont la composante
selon wu, est trés grande devant celle selon 17; A partir de 8 < 1, on obtient cosf ~ 1 et sinf ~ §. En outre
on suppose que 7, < 1 et Péquation [I7] devient donc :

% d\*
7;%’-,@(—) (xa‘la@’+y“‘1@):(1—ﬁ() xa-l)@’w@ (19)
o g

Expression dans laquelle on suppose que le kilobot reste prés du mur, c¢’est-a-dire que x reste constant,

par ailleurs le kilobot est sur le mur de droite donc la composante de la force selon 1, est nulle. On notera
fe=-kK ( d )a %! la force du mur selon x qui, ici, sera négative. L’équation |18 peut s’écrire alors :

[ea

Jo=Z0-0(1+f,))-0+8 (20)

— JO+0+Zf,0=0 (21)

On obtient donc une équation différentielle du second ordre qui se résout simplement analytiquement.

Le comportement de la solution dépend principalement du signe du déterminant A du polynéme caractéris-
tique.

A=1-4JZf, (22)

On note z, les solutions du polynéme caractérique et on résout ’équation homogéne dans un premier
temps selon le signe de A :

A>0 = z, = _1;;/5 = 0(t) = Ae™*" + Be®" (23)

1
A== ay=n=-pr = o(t) = (At + B)e™ (24)
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A< = x,=- o7 ¥ oy — (t) = e“*(Acosuvt + Bsinuvt) (25)
—_ —

On remarque en outre, que J étant un moment d’inertie, il est positif. De ce fait, —% est négatif. Les

solutions pour A > 0 ne sont pas celles qui nous intéressent car elles ne présentent pas de caractére oscilla-
toire. En revanche, pour A <0, il y a apparition de cosinus et sinus et donc d’oscillation. De plus, le facteur
devant ces fonctions trigonométriques est une exponentielle décroissante, ’oscillation est donc amortie.

Pour finir, la solution particuliére s’obtient trés simplement pour n’importe quel signe de A :

oparticuliére(t) = ﬁ (26)
fa
Pour obtenir la solution générale, il suffit de sommer la solution homogéne et la solution particuliére.
Dans le cas A <0, on s’attend & ce que le kilobot finisse avec un angle £ avec le mur. Cependant, pour que
A soit strictement négatif, il faut que 4JZ f, soit strictement supérieur a1 d’aprés ’équation Or f, est
négatif du fait que le mur exerce une force selon —u,. Nous avons vu plus haut que J était positif. Donc le
coefficient de couplage Z doit étre négatif.

7.3.2 Simulation

Nous avons, dans un premier temps, simulé le cas limite ci dessus avec comme paramétres x = 10
(cette valeur sera conservée par la suite sauf indication contraire), J =1 Z = =5, 6y = 0.1 radian et un biais
nul. On obtient les figures suivantes :

Position de la particule en fonction du temps ; , Alngle en fonct‘lon dultempg
1.2 4 F 04— 8 simulé L
1.0 A r
1.5 { r
0.8 F
1.0 1 r
0.6 F
E‘
= g
2 04 L 3 05 I
> g
<L
0.2 4 - 0.0 4 L
0.0 4 F
—0.5 1 r
—0.2 r
-1.0 + r
—0.4 4 T T — T T T T T T T T T
35 4.0 45 5.0 5.5 6.0 00 25 50 75 100 125 150 175 20.0
x [dO] Temps [dO/vO]
Fig |27 - Trajectoire du kilobot Fig[28- Angle du kilobot

On distingue trés clairement des oscillations sur ces figures. Particuliérement sur la figure ou le
robot arrive contre le mur avec un petit angle et finit par osciller jusqu’a se décrocher du mur et partir. La
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figure [28 permet de confirmer cette impression, le kilobot est bien en train d’osciller de plus en plus contre
le mur. Le modéle semble assez bien expliquer les oscillations contre le mur. Cependant, si on change ’angle
initial & 0.4 radians en conservant ces mémes paramétres, on obtient les graphes [29] et [30]

[Position de la particule en fonction du temps Angle en fonction du temps

10 4 — @ simulé 3
3.0 1 L
8 - |
251 L
6 - |
2.0 L
=
= g
g PEEE L
= 1.5 L e
<
2 1 L
1.0 L
04 L
0.5 - L
_2 - L
35 20 a5 5.0 55 60 00 25 50 75 100 125 150 175 20.0
x [d0] Temps [dO/vO]
Fig [29| - Trajectoire du kilobot Fig[30]- Angle du kilobot

L’angle initial étant plus grand que précedemment, le kilobot part plus rapidement du mur. De plus,
ce dernier se met & tourner sur lui-méme : avoir un coefficent de couplage négatif change la dynamique
de 7 qui cherche & s’antialigner de ¥ et si Z est assez grand le kilobot ne s’arréte jamais dés qu’il entre
en rotation. Ce ne sont pas des oscillations : on voit clairement sur la figure [30] que 6 croit. Bien que 'on
puisse observer des kilobots avoir ces comportements, celui-ci s’explique par leur biais. En effet il est possible
d’obtenir des kilobots qui vont en ligne droite et ces derniers ne sont pas décrit par ce nouveau modéle.

Ce modéle inertiel décrit bien les oscillations du kilobot contre le mur mais ne prévoit pas des tra-
jectoires plus simples, comme la ligne droite, expliquées par ’ancien modéle. Cependant, le modéle inertiel
nous permet d’ajouter des couples et de décrire plus efficacement la dynamique sur 6.

7.4 Roulement avec glissement

Nous avons ensuite essayé de considérer que le kilobot faisait un roulement avec glissement contre le
mur. Ainsi, nous avons exprimé la vitesse de glissement u sur le mur pour en déduire la force au contact du
mur. Cette derniére a deux composantes, 'une due a la vitesse paralléle au mur et 'autre due a la rotation
du kilobot sur lui-méme. Dans ’équation R représente le rayon du kilobot assimilé dans ce modéle & un
disque.

u=wv, + R (27)

Ainsi, on exprime la force du mur selon une composante normale et une tangentielle. La composante
normale est celle exprimée plus haut par I’équation [8] On obtient donc :
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F, = pu (28)

Avec p le coefficient de frottement tangentiel au contact. De plus, un couple I = —pyRu est induit selon
w, par cette force et s’ajoute donc dans I’équation du théoréme du moment cinétique. On obtient ainsi les
équations adimensionnés suivantes, en considérant que le kilobot se dirige vers un mur décrit par la droite
T=0:

ToUy :COSG—Uw—Ii(g)axa_l
Tyl =sind - v, — A(vy + 260) =sin6 - (1+ \)v, - 30 (29)
Jo = cos v, — sin v, — 7,0 - Tr(vy + %9) = (cos O — 1, )vy —sinfu, — (1, + %Tr)é

aA _ mug _ M v
Fuod> T = 5d A= 5 ca>

plus, on notera 7 = 7, + %TT. Pour rappel, « est la puissance a laquelle est mis = dans le potentiel, A est
Pintensité du potentiel, v correspond au coefficient de frottement visqueux de la vitesse, vg est la vitesse
finale du kilobot en ’absence de mur, d correspond au diamétre du kilobot, p correspond au coefficient de
frottement tangentiel, I le moment d’inertie du kilobot, ¢ le coefficient de couplage entre 7 et ¥ et v le
coeflicient de frottement visqueux de la vitesse angulaire.

. . L d
Avec, comme paramétres adimensionnés : k = J = é%, Tp = T = g—C De

7.4.1 Cas limite et simulation

On se place dans le cas d’un régime suramorti, a savoir J <« 1, de plus, on cherche & observer des
oscillations du kilobot contre le mur, la dynamique selon I’axe du mur, ici z, n’est donc pas essentielle. On
suppose alors que v, est nul ainsi que sa dérivée et donc on a v ~ v, et, comme précedemment, on se place
dans le cas des petits angles i.e § < 1. Les deux derniéres équations du systéme [29| deviennent donc :

(30)

Ty =0-30-(1+\)v
70 =(1-7)v

Le terme devant (1 —7,.) est rassurant : il n’est pris en compte qu’au contact avec le mur et si 7, > 1
on peut s’attendre a observer des phénoménes d’anti-alignement. On peut ainsi exprimer v et © en fonction
de 6 a partir de la premiére équation et, en injectant les valeurs trouvées dans la premiére équation, obtenir
une équation différentielle en 6.

T - . T
0 — 0=
1-7,. 1-7,

v= 0 (31)
AM1-7.)

v é: 1- 7‘0_
om0 =(1-7,) 5

+(1+M)7|0 (32)
Cette équation fait écho a la résolution du cas limite de la partie [7.3.1] On peut aussi noter que

c’est ’équation d’un oscillateur harmonique de masse M = 7,7, de raideur k = 7. — 1 et d’amortissement
a = @ + (1 + X\)7 avec l'angle 6 = 0 solution de I’équation différentielle. On a donc trois situations
possibles :

— k>0 et a>0, deux régimes sont possibles, avec ou sans oscillation.

— k>0et a<0, le systéme est anti-amorti, 8 = 0 est instable, avec ou sans oscillation.

— k <0, la solution est instable et il n’y a pas d’oscillation.

L’étude de ce cas limite nous permet de confirmer 'apparition potentielle d’oscillations. En outre,
cela nous permet de savoir quelles valeurs doivent prendre les paramétres dans la simulation. En effet, pour
avoir des oscillations, on cherche a ce que le polynéme caractéristique ait des racines complexes, soit que le
déterminant A soit strictement négatif.
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2

- M+(l+/\)7' — 47, 1(7 1) (33)

A

Etant donné qu’analyser le signe d’une somme s’avére compliqué, on se rend compte que le seul terme
présent uniquement dans le membre de droite de la somme est 7, et qu’avec 7,, et 7, de méme signe on
obtient bien une solution oscillante et amortie.

On cherche donc a vérifier si on retrouve bien le modéle prédit par le cas limite. Etant donné que dans
ce cas la dynamique du kilobot selon x est négligée, 'emplacement de départ du kilobot est contre le mur.
On se place dans le cas zg =0, yp =0, 0y =0.1, A=0.1, 7. = 1.5, en fixant J trés petit.

Position de la particule en fonction du temps Angle en fonction du temps .
1.25 F 0.10 — Bsimulé |
1.00 4 - 0.08 - L
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0.50 - L
T 0.04- L
— e -
o
5 0.25 : F %Zn
> < 0.02 A r
0.00 4 H
0.00 4 H
-0.25 - H
-0.02 L
-0.50 - L
T T T T _004 E T T T T T T F
4.5 5.0 5.5 6.0 0 20 40 60 80 100
x [dO] Temps [d0/vO]
Fig|31|- La dynamique selon = est nulle Fig 32| - La dynamique selon = est nulle

On observe bien des oscillations sur les figures [31] et [32| comme attendues avec 7, = 10. Cependant, ces
oscillations sont trés vite amorties. En simulant le cas du modéle général décrit pas les équations avec
les mémes paramétres qu’au dessus sauf pour 7, = 1, 7, = 0.5, J =5 et un angle initial 6y = 0.4 radians et le
kilobot vient depuis l'origine, la trajectoire est zoomée pour mieux déceler les oscillations, on obtient ainsi

les figures [33] et 34}

Lorsque que la dynamique selon x n’est plus négligée comme sur les figures [33| et on observe tou-
jours des oscillations. Cependant le kilobot ne sort pas du mur. Nous avons essayé ce modéle avec plusieurs
jeux de paramétres en faisant varier les nouveaux paramétres a savoir A, J et 7, et nous n’avons pu observer
que deux phénoménes distincts : soit le kilobot tapait le mur, ne repartait pas et présentait des oscillations
amorties, soit il repartait, & peu prés de la méme maniére que sur le modéle initial (équations [5| et |§[), a
savoir en rebondissant, ce qui n’est pas réellement satisfaisant.

Cependant, la notion de roulement avec glissement semble assez réaliste et conforme a ce qu’on 1'on

observe. En effet, nous avons remarqué qu’en changeant la matiére du mur, en prenant du bois ou du verre
par exemple, le robot partait plus ou moins vite du mur. Le verre étant plus lisse le robot partait plus
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rapidement que sur du bois, nous en avons donc conclu que le matériau impactait les oscillations et qu’un

phénomeéne de glissement ou de frottement permettrait d’expliquer cette différence entre matériaux.

Position de la particule en fonction du temps

__Angle en fonction du temps

. .
0.4 —— Bsimulé |
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Fig|33|- La dynamique selon z n’est plus négligée Fig|34|- La dynamique selon x n’est plus négligée

C’est pour cette raison que nous avons persévéré dans cette voie, en partant du principe que nous
n’avions pas les bons parameétres initiaux. Nous avons donc cherché un moyen de trouver ces parameétres
sans tous les essayer a la main. Pour cela, nous avons réécrit I’équation différentielle couplée [30] sous la forme
d’une équation matricielle. En effet, dans ’approximation des petits angles, on obtient :

0 0 1 0\/0
gl=10 -7 |6 34
4 R S (34
v Ty 2Ty Ty v

L’équation est donc linéaire et le vecteur nul en est solution. Pour la résoudre, on cherche a dia-
gonaliser la matrice. Pour résumer simplement, dés lors que la matrice est diagonalisable, les coordonnées
du vecteur solution seront chacune une combinaison linéaire d’exponentielle de coefficients les différentes
valeurs propres. Malheureusement, il n’existe pas de factorisation simple du polynoéme caractéristique de la
matrice en raison des cing paramétres d’entrée. On obtient tout de méme une solution|avec le logiciel Wolfra-
malpha, mais celle-ci est inexploitable de par sa longueur et la difficulté a étudier le signe des valeurs propres.

Pour étudier les valeurs propres de la matrice, il nous fallait représenter une fonction avec cinq para-
métres d’entrée (7, 7, 7, J et A) et 3 données en sortie, les valeurs propres de la matrice Le moyen
le plus pratique que nous avons trouvé, est, pour différentes valeurs des paramétres, de calculer les valeurs
propres et de les afficher dans le plan complexe étiquettées par un nombre. Pour revenir aux parameétres qui
ont permis d’obtenir une certaine valeur propre, il nous suffit de rentrer le numéro du point voulu. Nous
avons, en outre, affiché seulement les valeurs propres complexes dont la partie imaginaire est positive. En
effet, le polyndéme étant & coefficients réels et de degré trois, les racines sont ou bien toutes réelles ou bien
une seule est réelle et les deux autres sont complexes et conjuguées.
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Indice dont vous voulez les données:

0

Vert = 3 vp reelles, Bleu = 1 vp reelle, Rouge = vp complexe

n=051v=057r=05)=05A=05
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Fig [35| - Interface graphique

Les principaux problémes de cette méthode sont le temps de calcul et I'affichage graphique. En effet,
si chaque paramétre peut prendre dix valeurs différentes, le nombre de matrice & générer et de déterminant
a calculer est de 10° = 100000 et nous devons afficher au minimum 200000 points ce qui est, en plus d’étre
irréalisable, quasiment impossible & lire. Nous avons donc affiché différentes valeurs propres sur la figure [35]
avec, comme légende, les points verts correspondant au cas ol matrice a trois valeurs propres sont réelles,
les points en bleus correspondant au cas ot la matrice a une seule valeur propre réelle et allant de pair avec

o x

Indice dont vous voulez les données:

7
Tn=057v=50,7r=50)=50A=05

Les valeurs propres sont (002+041), (0.02-041)), (-0.93+0)

Explore around parameters below
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Fig [36| - Exemple du point n°7

un point rouge qui représente la valeur propre complexe de partie imaginaire positive.
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Cependant, ce moyen d’observation permet de trouver des jeux de paramétres pour lesquels une des
valeurs propres de la matrice a une partie réelle positive ce qui correspond au cas ot les valeurs de 'angle, la
vitesse angulaire et la vitesse divergent. Ce cas particulier nous intéresse car il correspond en fait au kilobot
se décollant du mur comme observé dans les expériences. Par exemple, sur la figure [36] on voit que les deux
valeurs propres complexes possédent une partie réelle positive ce qui correpondrait & un cas d’oscillation
non amortie. On simule donc les équations 30| pour un angle initial petit, 8 = 0.2 rad, tout en négligeant la
dynamique sur z et obtient les figures [37] et

On trouve ainsi un cycle limite, étant donné que le kilobot gagne en amplitude jusqu’a 1.3 radians
et reste stable par la suite. L’un des reproches pouvant étre faits a cette simulation sont évidemment qu’en
négligeant la dynamique selon x, nous ne pouvons pas observer le kilobot partir du mur. De plus, le kilobot
met 200 unités de temps et une quinzaine de périodes & atteindre le cycle limite, ce qui n’est pas du tout
ce qui est observé en pratique. En effet, le kilobot atteint son cycle limite en moins de 10 secondes et de
quelques périodes.

Nous avons cherché quelle est la plage de valeurs complexes que nous pouvions obtenir avec des
paramétres initiaux raisonnables (comme tous positifs par exemple), nous avons généré différentes valeurs
propres et nous avons seulement gardé les valeurs propres complexes dont les parties réelle et imaginaire
étaient positives car ce sont celles qui présentent les cycles limites, on prend la partie imaginaire positive
pour les mémes raisons que précedemment. On obtient donc la figure 39 qui ressemble a une conique. Malgré
le nombre de simulation faites (~ 200000), nous avons eu du mal & paver le haut de la conique tandis que le
bas est bien rempli.

Partie Valeurs propres & partie réelle Amplitude du cycle limite pour les valeurs propres pour lesquelles il existe

imaginaire positive (Params Aléatoires, Tau_N >0) 1.0 3.0

J 25
08 0.8 5
o
c
© 208
0.6 1 g 0.6 4 g
2 3
E 1>z
i ) =
. £ 0.4 1 o
& o
10 2
B

0.2 4

0.2 1 <

05

0.0 q
0.0 . ‘ ‘ . ‘ : . . 0.0
000 001 o002 003 004 005 006 007 008 0.00 001 002 003 004 005 0.06 0.07 0.08
Partie Réelle Partie réelle
Fig 39| - Différentes valeurs propres complexes Fig [40|- Amplitude maximale des valeurs propres

Nous avons remarqué que les jeux de paramétres présents sur la figure F)Lgl présentaient presque tous
des cycles limites et que le kilobot finissait par osciller avec une amplitude constante. Nous avons cherché
quelle était I’amplitude pour chaque point. Nous avons donc gardé un plus petit nombre de points a l’aide
d’une décimation pour pouvoir essayer de paver la conique. Nous avons, par la suite, pour chaque point,
calculé 'amplitude finale pour son jeu de paramétres et, & ’aide d’une barre de couleur, nous avons affiché
la valeur de cette derniére. On obtient la figure [A0] et nous remarquons qu’il semble y avoir une certaine
continuité, ce qui est rassurant. En outre, il y a certaines valeurs propres pour lesquelles 'amplitude finale
est supérieure a 7, ce qui est particulierement intéressant car dans le cas ol la dynamique selon x n’est pas
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négligé, le kilobot est sensé partir du mur. Nous avons donc repris les paramétres obtenus pour différents
cycles limites et nous avons simulé la trajectoire du kilobot dans le cas ou la trajectoire selon = n’est plus
négligée. Par exemple, pour le point 7 décrit plus haut on obtient les résultats suivants :

‘ Position de la particule en fonction du temps s Angle en fonction du temps L
2.0 L ’ |
i ‘ i
B 1
1.0 |
054} L
0.5 r El
g é 0.0 1 —— Bsimulé |
- 0.0 F 3
0.5 - -
~0.5 1 3
_ . URARRWIRINIAORACOIRER
| i |
151 ‘ ‘ _ sl | ‘ | | | | | L
35 4.0 45 5.0 5.5 6.0 0 250 500 750 1000 1250 1500 1750 2000
x [d0] Temps [d0/v0]
Fig41{- Trajectoire du kilobot pour le point 7 Fig[42|- Angle du kilobot pour le point 7

On observe a peu prés les mémes résultats méme si les oscillations semblent quelque peu différentes,
il s’agit juste d’un probléme d’échelle, de longueur et de temps. On remarque, en outre, que amplitude est
la méme ainsi que la fréquence (a aide d’une transformée de Fourier qui n’est pas affichée ici).

Position de la particule en fonction du temps Angle en fonction du temps
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Fig (43| - Trajectoire du kilobot Fig @ - Angle du kilobot
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On simule maintenant, pour un jeu de paramétres, le cas ou 'angle limite dépasse 7 (une couleur
claire sur la figure ce qui devrait signifier que le kilobot part du mur. Avec le jeu de données 7, = 0.23,
T, =4.84, 1. =7.03, J =8.17 et A = 0.5, on observe une amplitude d’oscillation finale de 2.20 radians ce qui

ne devrait pas étre le cas si la dynamique selon z n’est pas négligée.
Le kilobot s’¢loigne bien du mur une fois qu’il a passé 'angle de 7 et part en overshootant, c’est-a-dire

que le kilobot garde une certaine inertie angulaire et met du temps avant de s’aligner parfaitement avec sa
vitesse.

Position de la particule en fonction du temps
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Fig |45(- Trajectoire du kilobot dans la boite

Malheureusement, si on généralise le mur a une boite (Figure, on se rend vite compte que le kilobot
ne repart pas suffisamment loin dans ’aréne et reste bloqué dans le coin avec le mur du haut qui le pousse a
tourner dans le sens horaire et le mur de droite qui le pousse & tourner dans le sens antihoraire. Méme si le
modeéle présente ce défaut, il a tout de méme I'air de bien expliquer la rotation du kilobot et se justifie bien
physiquement.

7.5 Roulement avec et sans glissement

Nous avons donc continué sur la piste d’un roulement avec glissement, en considérant cette fois le
frottement solide classique exprimé a partir de la loi de Coulomb. On suppose que le contact entre le mur
et le kilobot est régi par un coefficient d’adhérence pu, la force que peut fournir le mur est alors contrainte
a rester dans le cone de frottement : un céne de demi-angle au sommet arctan p. Il y a donc deux régimes

- B . )
différents. Lorsque % <, il y a adhérence entre les deux surfaces : on est alors dans le cadre d’un roule-
X

ment sans glissement. A l'inverse, lorsque SE 2 la force de frottement tangentielle est plus faible que la
force tangentielle due a la propulsion du kilobot, ce dernier va alors glisser. Dans les deux cas, la force de
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. . . = o —
frottement tangentielle appliquée au point de contact engendre un couple : R A Fi,,,,r = RFyu.

Lors du roulement sans glissement, la vitesse de translation perpendiculaire au mur est fixée et vaut
vy = —Rf. On peut alors transformer les équations dimensionnées |1| et |3| et obtenir le systéme suivant :

I6 = ((~Récosh -sinh) - Q0 + RF, (35)
-mRY = Fysinf — yRO + F"" (36)
mu, = Fycos(0) —yu, + T (37)

On peut alors résoudre pour F?j” “T et remplacer pour n’avoir plus que des dynamiques en 6 et en = &
résoudre :

E) = —-mRf - Fysin 6 + Y R0 (38)

I6 = ¢(~Rcosf —sinf) - Q0 - mR* - RFysinf — yR*0 (39)

Il va étre plus simple de travailler avec les équations adimentionées pour comparer ce modéle avec les

autres, par la suite on notera Fp la force tangentielle adimentionnée. On obtient donc comme paramétres
i i & — My = Ivwo - v
adimensionnés 7, = S J = ™= g

Si I'on fait ’hypothése que 6 «< 1 ce qui correspond géneralement bien aux conditions de roulement
sans glissement et que I'on suppose alors que le robot est en contact constant avec le mur : v, = 0, on voit
alors apparaitre un nouvel oscillateur harmonique amorti & partir des équations [3§] et

Fr= —g - Tge —sinf (40)
(J+%)é+(7’n+2)é+g=0 (41)

On remarque alors que cet oscillateur est toujours amorti car 7,, > 0. On regarde alors les équations
pour le roulement avec glissement avec Frr = —p(cos6 —v,) sign(v, + g), on a alors :

TyUy = sinf — vy — p(cos 6 — v, ) sign(v, + g) (42)

JO = cos v, — sin G, — 7, — g(cosﬁ - v,) sign(vy, + g) (43)

Au vu de la difficulté que présente la résolution analytique de ce probléme, nous sommes directement
passés a la simulation, en restreignant d’abord la dynamique en x dans le but vérifier notre modéle.

La dynamique collée au mur est toujours amortie quel que soit ’angle d’incidence initial avec le mur.
En effet, pour avoir des oscillations, le modéle alterne entre du roulement avec glissement et du roulement
sans glissement pour lequel la dynamique est celle d’un oscillateur harmonique amorti. Une trajectoire est
présentée figure [49] Nous avons donc choisi de poursuivre sur le modéle du frottement visqueux.
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Fig — Graphes pour une simulation collé au mur réalisée pour : 0y =0.1, 7, = 0.2, 7, =0.1, J =2, p=0.5

8 Conclusion scientifique

Durant ce stage, nous avons essayé d’expliquer la rotation de kilobot contre le mur. Bien que nous
n’ayons pas trouvé de modeéle expliquant parfaitement ce phénoméne, nous avons exploré de nombreuses
voies et nous avons pu trouver des résultats, plus ou moins convaincants, expliquant le phénoméne physique
observé. Le modéle de frottement avec glissement est ’explication qui décrit avec le plus de précision les
expériences. Il faut cependant garder & l’esprit que les kilobots sont tous uniques malgré la volonté de les
standardiser et qu’il est complexe d’essayer de décrire les comportements de chaque individu par un modéle
général. En effet, chaque brosse a dent posséde un peu plus d’un millier de poils ([5]) et chaque kilobot
(la machine sur la figure |1} pas l’ensemble) présente ses propres spécifités. En effet, la vitesse du kilobot
ne lui est conférée que par la vibration de ses moteurs et ceux-ci peuvent présenter une disymeétrie entre
le moteur de gauche et celui de droite, chaque moteur étant unique, il en sera de méme pour cette disymétrie.

Ainsi le modéle du glissement solide préserve les résultats et trajectoires obtenus avec I’ancien mo-
déle hors du mur et explique déja un peu mieux les différentes rotations qui peuvent étre obtenues lors
des expériences. Il ne parcourt pas I'aréne sur toute une trajectoire mais il semble étre toutefois une piste
prometteuse pour la suite. Méme si ce modéle n’est pas forcément le bon, nous avons tout de méme exploré
et éliminé de nombreuses pistes et différents modéles, comme la variation de 7, avec la force ou encore des
potentiels /forces qui n’ont pas été présentés dans ce rapport car ils n’ont été ajoutés que briévement pour
observer leurs effets ou vérifier des hypothéses.

L’étude de la rotation des kilobots contre le mur reste un sujet sur lequel de nombreuses hypothéses
restent possibles et qui est loin d’étre complétement traité, il faut trouver un modeéle suffisamment simple

pour étre exploitable et suffisamment complet pour décrire la dynamique en tout point de n’importe quel
kilobot.
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9 Conclusion personnelle

Ce stage de six semaines dans le domaine de la recherche aura été trés enrichissant. En effet, bien que
nous ayons la chance en double licence d’avoir des stages d’immersion recherche en deuxiéme année, ces der-
niers durent deux mois & hauteur de quatre heures par semaine. Ils ne permettent pas de réaliser pleinement
ce qu’est le travail de chercheur. Lors de ce stage, nous avons pu nous rendre compte de la difficulté que
pouvait présenter cet aspect du métier, a savoir, n’avoir aucune réelle indication et chercher par nous-méme
comment résoudre le probléme qui a été posé.

Ce stage a été, de surcroit, une expérience professionnelle trés intéressante ot nous avons évolué dans
une équipe avec des chercheurs et des doctorants ce qui nous a permis de discuter, tester et méme débattre
de différentes idées de forces et/ou de modéles avec différentes personnes trés qualifiées dans un éventail de
domaines trés variés.

Nous avons, en outre, pu assister & de nombreux séminaires sur une grande quantité de sujets. Nous
avons méme pu réaliser deux exposés, 'un pour le sémainaire des matiéres programmables et ’autre pour
le séminaire des étudiants, ce qui nous a permis de préparer un exposé sur le travail que nous avions fait
jusque 1a. Nous avons du synthétiser un travail de plusieurs semaines sur une présentation d’une dizaine de
minutes ce qui fut trés instructif en 'absence d’une soutenance de stage.

Bien que nous n’aspirons pas a des carriéres dans la recherche, ce stage aura néanmoins été une
formation particuliérement intéressante au cours de laquelle nous avons pu appliquer les connaissances que
nous avons développées tout au long de nos trois années de licence, tant sur les plans de la physique et des
mathématiques que sur le plan informatique.
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